Zuo, Shiyu team published research on Journal of Cleaner Production in 2022 | 2403-88-5

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Related Products of 2403-88-5

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Related Products of 2403-88-5.

Zuo, Shiyu;Li, Dongya;Guan, Zeyu;Zhu, Yi;Pu, Mengjie;Xia, Dongsheng research published 《 Rapid electron transfer boosts CuO-Mediated nonradical oxidation pathways for efficient removal of Bisphenol A》, the research content is summarized as follows. CO2 emission reduction and CO2 capture during wastewater treatment are the main objectives of carbon neutral wastewater treatment. Here, we show that CuO is expected to promote non-radical oxidation pathways through enhanced electron transfer. Calcination temperature may affect crystal growth and microscopic strain, and the smaller particle size of CuO provides shorter distance nanochannels for core-shell diffusion of electrons/defects. This facilitates fast electron transfer and easy in/out diffusion of electrons/defects, thus promotes 1O2-mediated nonradical oxidation (13.6-fold increase in kinetic reaction rate). A kinetic model was developed to predict the kinetic reaction rate constants of CuO/peroxymonosulfate (PMS) under different parameter conditions. The degradation pathways and product toxicity of pollutants are explored through Frontier MO Theory (FMO) and the Toxicity Estimation Software Tool (TEST). Due to the alk. environment and the mild oxidation capacity of 1O2-mediated nonradical oxidation pathway, CuO/PMS system can not only effectively detoxify toxic organic pollutants without complete mineralization (emitting large amounts of CO2), but also capture CO2 and convert it into stable carbonates for environmental use. This study demonstrates the ability of CuO/PMS to effectively treat toxic organic pollutants in a practical microreactor, and provides a viable pathway for carbon neutral wastewater treatment.

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Related Products of 2403-88-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zou, Lijun team published research on Journal of Hazardous Materials in 2021 | 2403-88-5

Recommanded Product: 2,2,6,6-Tetramethyl-4-piperidinol, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Recommanded Product: 2,2,6,6-Tetramethyl-4-piperidinol.

Zou, Lijun;Zhu, Xiaoying;Lu, Lun;Xu, Yiliang;Chen, Baoliang research published 《 Bimetal organic framework/graphene oxide derived magnetic porous composite catalyst for peroxymonosulfate activation in fast organic pollutant degradation》, the research content is summarized as follows. A magnetic nitrogen-doped porous carbon material (Co/CoOx@NC) with large surface area was synthesized for peroxymonosulfate (PMS) activation. The addition of reduced graphene oxide (rGO) remarkably improved the catalytic performance of Co/CoOx@NC due to its enhancement on graphitization degree and structural regulation. Co/CoOx@NC exhibited excellent PMS activation for phenol removal with almost 100% removal efficiency in 10 min, close to that of homogeneous Co2+. Simultaneously, good reusability and recyclability of Co/CoOx@NC was achieved, demonstrating its feasibility for practical application. The PMS activation process in Co/CoOx@NC/PMS system was dominant by efficient mediation of electron transfer from pollutants to PMS through the sp2-hybridized carbon and nitrogen network. Batch tests of various organic compounds removal revealed the specific selectivity related to the electron-donating ability in Co/CoOx@NC/PMS system. As the negligible role of reactive radicals on pollutants degradation, the inhibition of interfering species (e.g., Cl, natural organic matters) was largely weakened. Present study not only provided a strategy for rationally designing highly efficient nanocarbon-based catalysts on PMS activation, but also presented new insight into the mechanism of PMS heterogeneous activation.

Recommanded Product: 2,2,6,6-Tetramethyl-4-piperidinol, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhu, Peiyu team published research on Molecular Diversity in 2022 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Reference of 5382-16-1

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Reference of 5382-16-1.

Zhu, Peiyu;Zhang, Jian;Yang, Yifei;Wang, Lixun;Zhou, Jinpei;Zhang, Huibin research published 《 Design, synthesis and biological evaluation of isoxazole-containing biphenyl derivatives as small-molecule inhibitors targeting the programmed cell death-1/ programmed cell death-ligand 1 immune checkpoint》, the research content is summarized as follows. Monoclonal antibodies targeting the programmed cell death-1/ programmed cell death-ligand 1 (PD-1/PD-L1) immune checkpoint have achieved enormous success in cancer immunotherapy. But the antibody-based immunotherapies carry a number of unavoidable deficiencies such as poor pharmacokinetic properties and immunogenicity. Small-mol. PD-1/PD-L1 inhibitors offer the superiority of complementarity with monoclonal antibodies and represent an appealing alternative. A novel series of isoxazole-containing biphenyl compounds were designed, synthesized and evaluated as PD-1/PD-L1 inhibitors in this paper. The structure-activity relationship of the novel synthesized compounds indicated that the ring-closure strategy of introducing isoxazole could be employed and the 3-cyanobenzyl group was significant for the inhibitory activity against the PD-1/PD-L1 protein-protein interactions. Mol. docking studies were performed to help understand the binding mode of the small-mol. inhibitor with the PD-L1 dimer. In particular, compound II-12 was a promising anti-PD-1/PD-L1 inhibitor with the IC50 value of 23.0 nM, providing valuable information for future drug development.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Reference of 5382-16-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhu, Mei team published research on European Journal of Medicinal Chemistry in 2021 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Application In Synthesis of 84358-13-4

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Application In Synthesis of 84358-13-4.

Zhu, Mei;Zhou, Huiyu;Ma, Ling;Dong, Biao;Zhou, Jinming;Zhang, Guoning;Wang, Minghua;Wang, Juxian;Cen, Shan;Wang, Yucheng research published 《 Design and evaluation of novel piperidine HIV-1 protease inhibitors with potency against DRV-resistant variants》, the research content is summarized as follows. A novel class of HIV-1 protease inhibitors with flexible piperidine as the P2 ligand was designed with the aim of improving extensive interactions with the active subsites. Many inhibitors exhibited good to excellent inhibitory effect on enzymic activity and viral infectivity. In particular, inhibitor 3a with (R)-piperidine-3-carboxamide as the P2 ligand and 4-methoxybenzenesulfonamide as the P2 ligand showed an enzyme Ki value of 29 pM and antiviral IC50 value of 0.13 nM, more than six-fold enhancement of activity compared to DRV. Furthermore, there was no significant change in potency against DRV-resistant mutations and HIV-1NL4-3 variant for 3a. Besides, inhibitor 3a exhibited potent antiviral activity against subtype C variants with low nanomole EC50 values. In addition, the mol. modeling revealed important hydrogen bonds and other favorable van der Waals interactions with the backbone atoms of the protease and provided insight for designing and optimizing more potent HIV-1 protease inhibitors.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Application In Synthesis of 84358-13-4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhu, Li team published research on Chemical Communications (Cambridge, United Kingdom) in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., COA of Formula: C5H11NO

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. COA of Formula: C5H11NO.

Zhu, Li;Zhao, Rui-Han;Li, Yu;Liu, Gong-Qing;Zhao, Yu research published 《 CtD strategy to construct stereochemically complex and structurally diverse compounds from griseofulvin》, the research content is summarized as follows. The Complexity to Diversity (CtD) strategy, for the synthesis of stereochem. complexes I (R = H, C(O)Me, Ph, Bn, etc; R1 = H, Me, n-Bu, Bn, etc.), II, III (R2 = OEt, benzyloxidanyl, morpholin-4-yl, etc.) and cis/trans-IV (R3 = H; R4 = Me, i-Pr; R3R4 = -(CH2)5-) and structurally diverse small mols. from natural products using ring-distortion reactions, was applied in the synthesis of a 47-member compounds I, II, III and cis/trans-IV collection from the natural product griseofulvin. A Tsuji-Trost allylation and oxa-Michael cyclization tandem reaction was used for the first time in the CtD strategy to generate complex ring fused cis/trans-IV .

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., COA of Formula: C5H11NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhu, Li team published research on Chemical Biology & Drug Design in 2021 | 5382-16-1

Safety of 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Safety of 4-Piperidinol.

Zhu, Li;Lu, Yapeng;Li, Yu;Ling, Yong;Zhao, Yu research published 《 Synthesis and evaluation of diphyllin β-hydroxyl amino derivatives as novel V-ATPase inhibitors》, the research content is summarized as follows. Natural diphyllin glycosides were identified as potent vacuolar H+-ATPase (V-ATPase) inhibitors. A series of diphyllin β-hydroxyl amino derivatives were designed and synthesized as novel diphyllin derivatives Most of these derivatives displayed potent cytotoxicity against six cancer cell lines with IC50 values in the submicromolar to nanomolar concentration range. Compounds 2b, 2c, 2l, 2m, and 2n showed similar V-ATPase inhibitory potency to Bafilomycin A1. Compound 2l exhibited potent activity of modulation of lysosomal pH and cytoplasmic pH.

Safety of 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhou, Yu team published research on European Journal of Medicinal Chemistry in 2021 | 5382-16-1

COA of Formula: C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. COA of Formula: C5H11NO.

Zhou, Yu;Li, Xiaoguang;Chen, Kerong;Ba, Qian;Zhang, Xu;Li, Jingquan;Wang, Jinfang;Wang, Hui;Liu, Hong research published 《 Structural optimization and biological evaluation for novel artemisinin derivatives against liver and ovarian cancers》, the research content is summarized as follows. An increasing number of artemisinin (ARS) and its derivatives have been reported for their potential therapeutic value of human cancer. However, their therapeutic potencies are limited owing to their poor pharmacokinetic profiles. Our previous studies showed that lead compound I originated from incorporating the pharmacophore of the approved chemotherapeutic agent melphalan into the basic skeleton of artemisinin with a succinic linker exhibited an excellent toxicity to human ovarian cancer cells and low cytotoxicity to normal cells. The mechanism studies demonstrated that it inhibited the growth and proliferation of ovarian cancer cells and resulted in S-phase arrest, apoptosis and inhibition of migration. Meanwhile, it exhibited excellent antitumor activities in animal models. Herein, further structure optimization for this lead compound I was performed and nineteen novel derivatives were designed and synthesized. Several compounds demonstrated powerful cytotoxic effects against human liver cancer and ovarian cancer cell lines, with their IC50s below 0.86μM against Hep3B and A2780 cell lines, which are superior to that of I. Four compounds were selected to further evaluate their antitumor activities in in vitro and in vivo ovarian and liver cancer models; the results indicated that compound II exhibited the best therapeutic effect, not only effectively inhibiting the growth of 7404 xenograft and Huh7 xenograft, but also presenting a good dose-dependent inhibition toward the growth of A2780 xenograft. Overall, based on these pos. results, these novel chem. structures may provide a new inspiration for the discovery of novel antitumor agents originated from artemisinin scaffolds.

COA of Formula: C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhou, Xueying team published research on Applied Organometallic Chemistry in 2022 | 5382-16-1

COA of Formula: C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. COA of Formula: C5H11NO.

Zhou, Xueying;Xu, Yaling;Wang, Caihong;Wu, Ge research published 《 Cu-catalyzed vinylamination of S-alkylisothiouronium salts with maleimides and alkylamines》, the research content is summarized as follows. A copper-catalyzed vinylamination of S-alkylisothiouronium salts with maleimide and organic amines with the assistance of FeCl3, enabling the preparation of structurally diverse aminoalkylthiolated maleimides and applying them to late-stage modification of pharmaceuticals is reported. Importantly, this strategy makes it possible to introduce the SCD3 functional group into the maleimide skeleton by using the prepared S-trideuteromethyl isothiouronium iodide. Preliminary mechanistic investigation shows that FeCl3 is essential to the current multi-component reaction by triggering S-alkylisothiouronium salts.

COA of Formula: C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhi, Zhuoer team published research on Journal of Medicinal Chemistry in 2020 | 84358-13-4

Product Details of C11H19NO4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Product Details of C11H19NO4.

Zhi, Zhuoer;Zhang, Wenting;Yao, Jingchun;Shang, Yanguo;Hao, Qingjing;Liu, Zhong;Ren, Yushan;Li, Jie;Zhang, Guimin;Wang, Jinxin research published 《 Discovery of Aryl Formyl Piperidine Derivatives as Potent, Reversible, and Selective Monoacylglycerol Lipase Inhibitors》, the research content is summarized as follows. Most of the current MAGL inhibitors function by an irreversible mechanism of action, causing a series of side effects. Herein, starting from irreversible inhibitors, 25 compounds were synthesized and evaluated in vitro for MAGL inhibition, among which, compound I showed the most potent inhibitory activity (IC50 = 15 nM). Crucially, docking studies demonstrated that the m-chlorine-substituted aniline fragment occupied a hydrophobic sub-pocket enclosed by side chains of Val191, Tyr194, Val270, and Lys273, which creatively identify a new key anchoring point for the development of new MAGL inhibitors. Furthermore, in vivo evaluation innovatively revealed that this reversible inhibitor I significantly displayed the depressive-like behaviors induced by reserpine. To the best of our knowledge, this is the first time that reversible inhibitors of MAGL were developed to support MAGL as a potential therapeutic target for depression.

Product Details of C11H19NO4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zheng, Wentian team published research on Water Research in 2021 | 2403-88-5

COA of Formula: C9H19NO, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. COA of Formula: C9H19NO.

Zheng, Wentian;Liu, Yanbiao;Liu, Wen;Ji, Haodong;Li, Fang;Shen, Chensi;Fang, Xiaofeng;Li, Xiang;Duan, Xiaoguang research published 《 A novel electrocatalytic filtration system with carbon nanotube supported nanoscale zerovalent copper toward ultrafast oxidation of organic pollutants》, the research content is summarized as follows. In this study, we designed an integrated electrochem. filtration system for catalytic activation of peroxymonosulfate (PMS) and degradation of aqueous microcontaminants. Composites of carbon nanotube (CNT) and nanoscale zero valence copper (nZVC) were developed to serve as high-performance catalysts, electrode and filtration media simultaneously. We observed both radical and nonradical reaction pathways, which collectively contributed to the degradation of model pollutants. Congo red was completely removed via a single-pass through the nZVC-CNT filter (τ <2 s) at neutral pH. The rapid kinetics of Congo red degradation were maintained across a wide pH range (from 3.0-7.0), in complicated matrixes (e.g., tap water and lake water), and for the degradation of a wide array of persistent organic contaminants. The superior activity of nZVC-CNT stems from the boosted redox cycles of Cu2+/Cu+ in the presence of an external elec. field. The flow-through design remarkably outperformed the conventional batch system due to the convection-enhanced mass transport. Mechanism studies suggested that the carbonyl group and electrophilic oxygen of CNT served as electron donor and electron acceptor, resp., to activate PMS to generate •OH and 1O2via one-electron transport. The electron-deficient Cu atoms are prone to react with PMS via surface hydroxyl group to produce reactive intermediates (Cu2+-O-O-SO-3), and then 1O2 will be generated by breaking the coordination bond of the metastable intermediate. The study will provide a green strategy for the remediation of organic pollution by a highly efficient and integrated system based on catalytic oxidation, electrochem., and nano-filtration techniques.

COA of Formula: C9H19NO, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem