Yin, Huifen team published research on Environmental Science and Pollution Research in 2021 | 2403-88-5

Quality Control of 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Quality Control of 2403-88-5.

Yin, Huifen;Shi, Hanlu;Sun, Lei;Xia, Dongsheng;Yuan, Xiangjuan research published 《 Construction of Ag2O-modified g-C3N4 photocatalyst for rapid visible light degradation of ofloxacin》, the research content is summarized as follows. The design of stable and highly efficient photocatalysts had emerged as an economic and promising way for eliminating harmful pharmaceutical pollutants. In this study, a series of Ag2O-modified g-C3N4 composites with different Ag2O amounts (denoted as Ag2O-CNx) were fabricated via a facile reflux condensation methodol. Ofloxacin (OFL) was chosen as a model pollutant to evaluate the degradation efficiency of the photocatalytic system. The optimal photocatalytic activity was achieved with Ag2O-CN1.0, which reached up to 99.1% removal of OFL after 15-min reaction and the pseudo-first-order constant was 0.469 min-1, approx. 42 times higher than that of g-C3N4. Considering the complexity of the actual environment, the important influential factors such as catalyst dosage, initial OFL concentration, solution pH, and natural organic matter on the OFL degradation were systematically investigated. Addnl., Ag2O-CN1.0 showed good stability and recyclability in multiple cycle experiments The feasible photodegradation mechanism of OFL was proposed with radical scavenger experiments, and the degradation products were determined Furthermore, the enhanced photocatalytic activity could be ascribed to not only the high photogenerated charge separation efficiency and the surface plasmon resonance effect of metallic Ag, but also the p-n heterojunction formed between Ag2O and g-C3N4. Therefore, Ag2O-CN1.0 was a treatment material possessing great application prospects for eliminating OFL in wastewater.

Quality Control of 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem