In 2019 ACS CATAL published article about TERTIARY AMIDES; HYDROGENATION; DERIVATIVES; AMINATION; NITRILES; HYDROSILANES; METHYLATION; AMIDATION; CHEMISTRY; MECHANISM in [Trillo, Paz; Adolfsson, Hans] Umea Univ, Dept Chem, KBC3,Linnaeus Vag 10, SE-90187 Umea, Sweden in 2019, Cited 66. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7. Application In Synthesis of 1,4-Dioxa-8-azaspiro[4.5]decane
Direct reductive N-alkylation of secondary amines with carboxylic acids using molybdenum hexacarbonyl (5 mol %) as catalyst and diethoxymethylsilane as reducing agent generate enamines in a straightforward fashion in high yields. The formed enamines are without the need for isolation or purification further reacted with trimethylsilyl cyanide in the same reaction flask to yield alpha-amino nitriles in good yields. In the optimized reaction conditions equimolar amounts of carboxylic acid and amine are reacted under neat conditions, and a catalytic amount of trifluoroethanol (0.1 mol %) is added along with TMSCN for the cyanation step. The reductive N-alkylation reaction is demonstrated to be highly chemoselective, tolerating a multitude of different functional groups present in the starting carboxylic acids and amines. The reaction is scalable and the generated alpha-amino nitriles are converted to other useful compounds, e.g., alpha-amino acids or amino-tetrazoles. In addition, the intermediate enamines are further transformed into triazolines, sulfonylformamidines, pyrimidinediones, and TMS-propargylamines, respectively, in high yields under mild reaction conditions. Benzoic acids react with secondary amines under similar conditions to give tertiary amines in high yields, and using this methodology, the biologically active compound Piribedil was isolated in 80% yield in a direct one-pot reaction setup.
Application In Synthesis of 1,4-Dioxa-8-azaspiro[4.5]decane. Welcome to talk about 177-11-7, If you have any questions, you can contact Trillo, P; Adolfsson, H or send Email.
Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem