The Shocking Revelation of C7H13NO2

Computed Properties of C7H13NO2. Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.

In 2020 ANGEW CHEM INT EDIT published article about CATALYZED ASYMMETRIC HYDROGENATION; METHODOLOGY COOPERATIVE CATALYSIS; COMPLEX RUPHOX-RU; C-H AMINATION; BORROWING HYDROGEN; ENANTIOSELECTIVE SYNTHESIS; DIASTEREOSELECTIVE SYNTHESIS; SECONDARY ALCOHOLS; N-ALKYLATION; KETONES in [Xu, Ruirui; Wang, Kun; Liu, Haoying; Tang, Weijun; Sun, Huaming; Xue, Dong; Wang, Chao] Shaanxi Normal Univ, Sch Chem & Chem Engn, Minist Educ, Key Lab Appl Surface & Colloid Chem, Xian 710062, Peoples R China; [Xiao, Jianliang] Univ Liverpool, Dept Chem, Liverpool L69 7ZD, Merseyside, England in 2020, Cited 129. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7. Computed Properties of C7H13NO2

A ruthenium-catalyzed formal anti-Markovnikov hydroamination of allylic alcohols for the synthesis of chiral gamma-amino alcohols is presented. Proceeding via an asymmetric hydrogen-borrowing process, the catalysis allows racemic secondary allylic alcohols to react with various amines, affording enantiomerically enriched chiral gamma-amino alcohols with broad substrate scope and excellent enantioselectivities (68 examples, up to >99 %ee).

Computed Properties of C7H13NO2. Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem