Ito, Masahiro’s team published research in Journal of Medicinal Chemistry in 61 | CAS: 1702809-17-3

Journal of Medicinal Chemistry published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, Safety of (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide.

Ito, Masahiro published the artcileDiscovery of 3-Benzyl-1-(trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea Derivatives as Novel and Selective Cyclin-Dependent Kinase 12 (CDK12) Inhibitors, Safety of (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, the publication is Journal of Medicinal Chemistry (2018), 61(17), 7710-7728, database is CAplus and MEDLINE.

Cyclin-dependent kinase 12 (CDK12) plays a key role in the coordination of transcription with elongation and mRNA processing. CDK12 mutations found in tumors and CDK12 inhibition sensitize cancer cells to DNA-damaging reagents and DNA-repair inhibitors. This suggests that CDK12 inhibitors are potential therapeutics for cancer that may cause synthetic lethality. Here, we report the discovery of 3-benzyl-1-(trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea derivatives as novel and selective CDK12 inhibitors. Structure-activity relationship studies of a HTS hit, structure-based drug design, and conformation-oriented design using the Cambridge Structural Database afforded the optimized compound 2, which exhibited not only potent CDK12 (and CDK13) inhibitory activity and excellent selectivity but also good physicochem. properties. Furthermore, 2 inhibited the phosphorylation of Ser2 in the C-terminal domain of RNA polymerase II and induced growth inhibition in SK-BR-3 cells. Therefore, 2 represents an excellent chem. probe for functional studies of CDK12 and could be a promising lead compound for drug discovery.

Journal of Medicinal Chemistry published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, Safety of (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Iniguez, Amanda Balboni’s team published research in Cancer Cell in 33 | CAS: 1702809-17-3

Cancer Cell published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, Category: piperidines.

Iniguez, Amanda Balboni published the artcileEWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma, Category: piperidines, the publication is Cancer Cell (2018), 33(2), 202-216.e6, database is CAplus and MEDLINE.

Many cancer types are driven by oncogenic transcription factors that have been difficult to drug. Transcriptional inhibitors, however, may offer inroads into targeting these cancers. Through chem. genomics screening, we identified that Ewing sarcoma is a disease with preferential sensitivity to THZ1, a covalent small-mol. CDK7/12/13 inhibitor. The selective CDK12/13 inhibitor, THZ531, impairs DNA damage repair in an EWS/FLI-dependent manner, supporting a synthetic lethal relationship between response to THZ1/THZ531 and EWS/FLI expression. The combination of these mols. with PARP inhibitors showed striking synergy in cell viability and DNA damage assays in vitro and in multiple models of Ewing sarcoma, including a PDX, in vivo without hematopoietic toxicity.

Cancer Cell published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, Category: piperidines.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Shyamsunder, Pavithra’s team published research in International Journal of Molecular Sciences in 23 | CAS: 1702809-17-3

International Journal of Molecular Sciences published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C15H14O3, SDS of cas: 1702809-17-3.

Shyamsunder, Pavithra published the artcileTHZ531 Induces a State of BRCAness in Multiple Myeloma Cells: Synthetic Lethality with Combination Treatment of THZ 531 with DNA Repair Inhibitors, SDS of cas: 1702809-17-3, the publication is International Journal of Molecular Sciences (2022), 23(3), 1207, database is CAplus and MEDLINE.

Multiple myeloma (MM) is a hematol. disease marked by abnormal growth of B cells in bone marrow. Inherent chromosomal instability and DNA damage are major hallmarks of MM, which implicates an aberrant DNA repair mechanism. Studies have implicated a role for CDK12 in the control of expression of DNA damage response genes. In this study, we examined the effect of a small mol. inhibitor of CDK12-THZ531 on MM cells. Treatment of MM cells with THZ531 led to heightened cell death accompanied by an extensive effect on gene expression changes. In particular, we observed downregulation of genes involved in DNA repair pathways. With this insight, we extended our study to identify synthetic lethal mechanisms that could be exploited for the treatment of MM cells. Combination of THZ531 with either DNA-PK inhibitor (KU-0060648) or PARP inhibitor (Olaparib) led to synergistic cell death. In addition, combination treatment of THZ531 with Olaparib significantly reduced tumor burden in animal models. Our findings suggest that using a CDK12 inhibitor in combination with other DNA repair inhibitors may establish an effective therapeutic regimen to benefit myeloma patients.

International Journal of Molecular Sciences published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C15H14O3, SDS of cas: 1702809-17-3.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Gao, Yang’s team published research in Cell Chemical Biology in 25 | CAS: 1702809-17-3

Cell Chemical Biology published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, COA of Formula: C30H32ClN7O2.

Gao, Yang published the artcileOvercoming Resistance to the THZ Series of Covalent Transcriptional CDK Inhibitors, COA of Formula: C30H32ClN7O2, the publication is Cell Chemical Biology (2018), 25(2), 135-142.e5, database is CAplus and MEDLINE.

Irreversible inhibition of transcriptional cyclin-dependent kinases (CDKs) provides a therapeutic strategy for cancers that rely on aberrant transcription; however, lack of understanding of resistance mechanisms to these agents will likely impede their clin. evolution. Here, we demonstrate upregulation of multidrug transporters ABCB1 and ABCG2 as a major mode of resistance to THZ1, a covalent inhibitor of CDKs 7, 12, and 13 in neuroblastoma and lung cancer. To counter this obstacle, we developed a CDK inhibitor, E9, that is not a substrate for ABC transporters, and by selecting for resistance, determined that it exerts its cytotoxic effects through covalent modification of cysteine 1039 of CDK12. These results highlight the importance of considering this common mode of resistance in the development of clin. analogs of THZ1, identify a covalent CDK12 inhibitor that is not susceptible to ABC transporter-mediated drug efflux, and demonstrate that target deconvolution can be accomplished through selection for resistance.

Cell Chemical Biology published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, COA of Formula: C30H32ClN7O2.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Qi, Jin-Chun’s team published research in Journal of Experimental & Clinical Cancer Research in 40 | CAS: 1702809-17-3

Journal of Experimental & Clinical Cancer Research published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, Application In Synthesis of 1702809-17-3.

Qi, Jin-Chun published the artcileCDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 contributes to prostate carcinogenesis, Application In Synthesis of 1702809-17-3, the publication is Journal of Experimental & Clinical Cancer Research (2021), 40(1), 2, database is CAplus and MEDLINE.

The expression levels of CDK13 in PCa tissues and different cell lines were determined by quant. real-time PCR and Western blot anal. In vitro and in vivo assays were preformed to explore the biol. effects of CDK13 in PCa cells. Furthermore, the mechanism of circCDK13 was investigated by using loss-of-function and gain-of-function assays in vitro and in vivo. Results: Here we show that CDK13 is significantly upregulated in human PCa tissues. CDK13 depletion and overexpression in PCa cells decrease and increase, resp., cell proliferation, and the pro-proliferation effect of CDK13 is strengthened by its interaction with E2F5. Mechanistically, transcriptional activation of endogenous CDK13, but not the forced expression of CDK13 by its expression vector, remarkably promotes E2F5 protein expression by facilitating circCDK13 formation. Further, the upregulation of E2F5 enhances CDK13 transcription and promotes circCDK13 biogenesis, which in turn sponges miR-212-5p/449a and thus relieves their repression of the E2F5 expression, subsequently leading to the upregulation of E2F5 expression and PCa cell proliferation. Conclusions: These findings suggest that CDK13 upregulation-induced formation of the pos. feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 is responsible for PCa development. Targeting this newly identified regulatory axis may provide therapeutic benefit against PCa progression and drug resistance.

Journal of Experimental & Clinical Cancer Research published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, Application In Synthesis of 1702809-17-3.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Geng, Meijuan’s team published research in Biochemical and Biophysical Research Communications in 520 | CAS: 1702809-17-3

Biochemical and Biophysical Research Communications published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, Safety of (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide.

Geng, Meijuan published the artcileTargeting CDK12-mediated transcription regulation in anaplastic thyroid carcinoma, Safety of (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, the publication is Biochemical and Biophysical Research Communications (2019), 520(3), 544-550, database is CAplus and MEDLINE.

Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid cancer, with no effective treatment available. Identification of new anti-ATC drugs represents an urgent need. In this study, we find that ATC cells are highly sensitive to THZ531, a potent inhibitor of the transcriptional cyclin-dependent kinase (CDK), CDK12. Cell-based assays demonstrate that CDK12 inhibition significantly impedes cell cycle progression, induces apoptotic cell death, and impairs colony formation in ATC cells. THZ531 causes a loss of elongating RNA polymerase II and suppresses gene expression in ATC cells. An integrative anal. of gene expression profiles and super-enhancer landscape, combining with functional assays, leads to the discovery of two new ATC cancer genes, ZC3H4 and NEMP1. Furthermore, CDK12 inhibition enhances the sensitivity of ATC cells to doxorubicin-mediated chemotherapy. Thus, these findings indicate that CDK12 is a potential therapeutic target for ATC treatment and its inhibition may help to overcome the chemoresistance in patients with ATC.

Biochemical and Biophysical Research Communications published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, Safety of (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Ketley, Ami’s team published research in Science Translational Medicine in 12 | CAS: 1702809-17-3

Science Translational Medicine published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, COA of Formula: C30H32ClN7O2.

Ketley, Ami published the artcileCDK12 inhibition reduces abnormalities in cells from patients with myotonic dystrophy and in a mouse model, COA of Formula: C30H32ClN7O2, the publication is Science Translational Medicine (2020), 12(541), eaaz2415, database is CAplus and MEDLINE.

Myotonic dystrophy type 1 (DM1) is an RNA-based disease with no current treatment. It is caused by a transcribed CTG repeat expansion within the 3�untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Mutant repeat expansion transcripts remain in the nuclei of patients�cells, forming distinct microscopically detectable foci that contribute substantially to the pathophysiol. of the condition. Here, we report small-mol. inhibitors that remove nuclear foci and have beneficial effects in the HSALR mouse model, reducing transgene expression, leading to improvements in myotonia, splicing, and centralized nuclei. Using chemoproteomics in combination with cell-based assays, we identify cyclin-dependent kinase 12 (CDK12) as a druggable target for this condition. CDK12 is a protein elevated in DM1 cell lines and patient muscle biopsies, and our results showed that its inhibition led to reduced expression of repeat expansion RNA. Some of the inhibitors identified in this study are currently the subject of clin. trials for other indications and provide valuable starting points for a drug development program in DM1.

Science Translational Medicine published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, COA of Formula: C30H32ClN7O2.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Lei, Hanqi’s team published research in Cell Death & Disease in 12 | CAS: 1702809-17-3

Cell Death & Disease published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, HPLC of Formula: 1702809-17-3.

Lei, Hanqi published the artcileCRISPR screening identifies CDK12 as a conservative vulnerability of prostate cancer, HPLC of Formula: 1702809-17-3, the publication is Cell Death & Disease (2021), 12(8), 740, database is CAplus and MEDLINE.

Androgen receptor (AR) signaling inhibitors provide limited survival benefits to patients with prostate cancer (PCa), and worse, few feasible genomic lesions restrict targeted treatment to PCa. Thus, a better understanding of the critical dependencies of PCa may enable more feasible therapeutic approaches to the dilemma. We performed a kinome-scale CRISPR/Cas9 screen and identified cyclin-dependent kinase 12 (CDK12) as being conservatively required for PCa cell survival. Suppression of CDK12 by the covalent inhibitor THZ531 led to an obvious anti-PCa effect. Mechanistically, THZ531 downregulated AR signaling and preferentially repressed a distinct class of CDK12 inhibition-sensitive transcripts (CDK12-ISTs), including prostate lineage-specific genes, and contributed to cellular survival processes. Integration of the super-enhancer (SE) landscape and CDK12-ISTs indicated a group of potential PCa oncogenes, further conferring the sensitivity of PCa cells to CDK12 inhibition. Importantly, THZ531 strikingly synergized with multiple AR antagonists. The synergistic effect may be driven by attenuated H3K27ac signaling on AR targets and an intensive SE-associated apoptosis pathway. In conclusion, we highlight the validity of CDK12 as a druggable target in PCa. The synergy of THZ531 and AR antagonists suggests a potential combination therapy for PCa.

Cell Death & Disease published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, HPLC of Formula: 1702809-17-3.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Olson, Calla M.’s team published research in Cell Chemical Biology in 26 | CAS: 1702809-17-3

Cell Chemical Biology published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, Quality Control of 1702809-17-3.

Olson, Calla M. published the artcileDevelopment of a Selective CDK7 Covalent Inhibitor Reveals Predominant Cell-Cycle Phenotype, Quality Control of 1702809-17-3, the publication is Cell Chemical Biology (2019), 26(6), 792-803.e10, database is CAplus and MEDLINE.

Cyclin-dependent kinase 7 (CDK7) regulates both cell cycle and transcription, but its precise role remains elusive. We previously described THZ1, a CDK7 inhibitor, which dramatically inhibits superenhancer-associated gene expression. However, potent CDK12/13 off-target activity obscured CDK7s contribution to this phenotype. Here, we describe the discovery of a highly selective covalent CDK7 inhibitor. YKL-5-124 causes arrest at the G1/S transition and inhibition of E2F-driven gene expression; these effects are rescued by a CDK7 mutant unable to covalently engage YKL-5-124, demonstrating on-target specificity. Unlike THZ1, treatment with YKL-5-124 resulted in no change to RNA polymerase II C-terminal domain phosphorylation; however, inhibition could be reconstituted by combining YKL-5-124 and THZ531, a selective CDK12/13 inhibitor, revealing potential redundancies in CDK control of gene transcription. These findings highlight the importance of CDK7/12/13 polypharmacol. for anti-cancer activity of THZ1 and posit that selective inhibition of CDK7 may be useful for treatment of cancers marked by E2F misregulation.

Cell Chemical Biology published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C30H32ClN7O2, Quality Control of 1702809-17-3.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Zhang, Tinghu’s team published research in Nature Chemical Biology in 12 | CAS: 1702809-17-3

Nature Chemical Biology published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C15H20BNO2, COA of Formula: C30H32ClN7O2.

Zhang, Tinghu published the artcileCovalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors, COA of Formula: C30H32ClN7O2, the publication is Nature Chemical Biology (2016), 12(10), 876-884, database is CAplus and MEDLINE.

Cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) play critical roles in the regulation of gene transcription. However, the absence of CDK12 and CDK13 inhibitors has hindered the ability to investigate the consequences of their inhibition in healthy cells and cancer cells. Here we describe the rational design of a first-in-class CDK12 and CDK13 covalent inhibitor, THZ531. Co-crystallization of THZ531 with CDK12-cyclin K indicates that THZ531 irreversibly targets a cysteine located outside the kinase domain. THZ531 causes a loss of gene expression with concurrent loss of elongating and hyperphosphorylated RNA polymerase II. In particular, THZ531 substantially decreases the expression of DNA damage response genes and key super-enhancer-associated transcription factor genes. Coincident with transcriptional perturbation, THZ531 dramatically induced apoptotic cell death. Small mols. capable of specifically targeting CDK12 and CDK13 may thus help identify cancer subtypes that are particularly dependent on their kinase activities.

Nature Chemical Biology published new progress about 1702809-17-3. 1702809-17-3 belongs to piperidines, auxiliary class Cell Cycle,CDK, name is (R,E)-N-(4-(3-((5-Chloro-4-(1H-indol-3-yl)pyrimidin-2-yl)amino)piperidine-1-carbonyl)phenyl)-4-(dimethylamino)but-2-enamide, and the molecular formula is C15H20BNO2, COA of Formula: C30H32ClN7O2.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem