Elbadawi, Mostafa M. team published research on European Journal of Medicinal Chemistry in 2021 | 5382-16-1

Recommanded Product: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Recommanded Product: 4-Piperidinol.

Elbadawi, Mostafa M.;Eldehna, Wagdy M.;Wang, Wenjie;Agama, Keli K.;Pommier, Yves;Abe, Manabu research published 《 Discovery of 4-alkoxy-2-aryl-6,7-dimethoxyquinolines as a new class of topoisomerase I inhibitors endowed with potent in vitro anticancer activity》, the research content is summarized as follows. Two novel series of 4-alkoxy-2-arylquinolines I (n = 1, 2; R = pyrrolidino, 4-hydroxypiperidino, piperidino, morpholino; X = Cl, CF3) were designed and synthesized based on SARs of the reported TOP1 inhibitors and structural features required for stabilization of TOP1-DNA cleavage complexes (TOP1ccs). The in vitro anticancer activity of these two series of compounds was evaluated at one dose level using NCI-60 cancer cell lines panel. Compounds with p-substituted Ph at C2 and Pr linker at C4, were the most potent and were selected for assay at five doses level in which they exhibited potent anticancer activity at sub-micromolar level against diverse cancer cell lines. Compound I (Ar = 4-F3CC6H4, 2-furyl, 2-thienyl, etc.; n = 2; R = pyrrolidino) was the most potent with full panel GI50 MG-MID 1.26μM and the most sensitive cancers were colon cancer, leukemia and melanoma. Melanoma (LOX IMVI) was the most sensitive cell line to all tested compounds displaying GI50 and LC50 at sub-micromolar concentration against almost of the tested compounds Few compounds were assayed using TOP1-mediated DNA cleavage assay to evaluate their ability to stabilize TOP1ccs resulting in cancer cell death. The morpholino analogs I (n = 2; R = morpholino; X = Cl, CF3) exhibited moderate TOP1 inhibitory activity compared to 1μM camptothecin suggesting their use as lead compounds that can be optimized for the development of more potent anticancer agents with potential TOP1 inhibitory activity.

Recommanded Product: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Eliwa, Essam M. team published research on Green Chemistry Letters and Reviews in 2021 | 5382-16-1

Reference of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Reference of 5382-16-1.

Eliwa, Essam M.;Frese, Marcel;Halawa, Ahmed H.;Soltan, Maha M.;Ponomareva, Larissa V.;Thorson, Jon S.;Shaaban, Khaled A.;Shaaban, Mohamed;El-Agrody, Ahmed M.;Sewald, Norbert research published 《 Metal-free domino amination-Knoevenagel condensation approach to access new coumarins as potent nanomolar inhibitors of VEGFR-2 and EGFR》, the research content is summarized as follows. A metal-free, atom-economy and simple work-up domino amination-Knoevenagel condensation approach to construct new coumarin analogous I [R1 = pyrrolidin-1-yl, morpholino, (4-hydroxy-1-piperidyl), etc.; R2 = cyano, methoxycarbonyl, (1-amino-2,2-dicyano-vinyl)] were described. Further, new formyl and nitro coumarin derivatives II [R1 = methoxy, pyrrolidin-1-yl, morpholino, etc.; R3 = formyl, nitro] were synthesized via C-N coupling reaction of various cyclic secondary amines and 4-chloro-3-(formyl-/nitro)coumarins resp. The confirmed compounds were screened for their in vitro anti-proliferative activity against KB-3-1, A549 and PC3 human cancer cell lines using resazurin cellular-based assay. Among them, coumarin derivatives I [R1 = (4-piperidylmethylamino); R2 = cyano, methoxycarbonyl] displayed the best anti-cervical cancer potency (KB-3-1) with IC50 values of 15.5 ± 3.54 and 21 ± 4.24μM, resp. Also, I [R1 = (4-piperidylmethylamino); R2 = methoxycarbonyl] showed the most promising cytotoxicity toward A549 with IC50 value of 12.94 ± 1.51μM. As well, II [R1 = morpholino; R3 = nitro]presented a more significant impact of potency against PC3 with IC50 7.31 ± 0.48μM. Moreover, I [R1 = morpholino; R2 = cyano] manifested selectivity against PC3 (IC50 = 20.16 ± 0.07μM), while I [R1 = (4-piperidylmethylamino); R2 = cyano] was selective toward KB-3-1 cell line (IC50 = 21 ± 4.24μM). Matching with docking profile, the enzymic assay divulged that I [R1 = (4-piperidylmethylamino); R2 = cyano] was a dual potent single-digit nanomolar inhibitor of VEGFR-2 and EGFR with IC50 values of 24.67 nM and 31.6 nM that were almost equipotent to sorafenib (31.08 nM) and erlotinib (26.79 nM), resp.

Reference of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Chen, Zimin team published research on Chemistry – A European Journal in 2021 | 5382-16-1

SDS of cas: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. SDS of cas: 5382-16-1.

Chen, Zimin;Yuan, Weiming research published 《 N-Cyanation of Primary and Secondary Amines with Cyanobenziodoxolone (CBX) Reagent》, the research content is summarized as follows. An efficient electrophilic N-cyanation of amines e.g., pyrrolidine with a stable and less-toxic 1-cyano-1,2-benziodoxol-3-(1H)-one reagent towards the synthesis of cyanamides e.g., Pyrrolidine-1-carbonitrile was disclosed. This synthetically practicable strategy allows the construction of a wide variety of cyanamides under very mild and simple conditions with a broad functional group compatibility, and showcases a huge potential in late-stage modification of complex mols.

SDS of cas: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Cao, Zhi team published research on European Journal of Medicinal Chemistry in 2022 | 5382-16-1

Safety of 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Safety of 4-Piperidinol.

Lei, Hongrui;Cao, Zhi;Wu, Huinan;Li, Tong;Wang, Xinyu;Chen, Yuxiang;Ma, Enlong;Sun, Lixin;Zhai, Xin research published 《 Structural and PK-guided identification of indole-based non-acidic autotaxin (ATX) inhibitors exhibiting high in vivo anti-fibrosis efficacy in rodent model》, the research content is summarized as follows. In recent decades, pharmacol. targeting of the autotaxin (ATX)/lysophosphatidic acid (LPA) axis accounted for excellent disease management benefits. Herein, to extend the scope of structure-activity relationships (SARs), fifteen indole-based carbamate derivatives I [R = 4-Me, 3,4-difluoro, 2,3-dichloro; R1 = pyrrolidin-1-yl, (4-methyl-1-piperidyl), (4-methylpiperazin-1-yl); R2 = H, CH3, etc] were prepared to evaluate the ATX inhibitory potency. Among them, compound I [R = 3,5-dichloro; R1 = morpholino; R2 = H] bearing morpholine moiety was identified as the optimal ATX inhibitor (0.41 nM), superior to the pos. control GLPG1690 (2.90 nM). To resolve the intractable issue of poor pharmacokinetic (PK) property, urea moiety was introduced as a surrogate of carbamate which furnished compounds II [R3 = morpholino, (4-hydroxy-1-piperidyl), [2-(hydroxymethyl)pyrrolidin-1-yl]; R4 = H, 4-Cl, 4-F, etc]. The dedicated modification identified the diethanolamine entity II [R3 = [bis(2-hydroxyethyl)amino]; R4 = (3-chloro-4-methoxy-phenyl)] with satisfactory water solubility and PK profiles with a min. sacrifice of ATX inhibition (2.17 nM). The most promising candidate II [R3 = [bis(2-hydroxyethyl)amino]; R4 = (3-chloro-4-methoxy-phenyl)] was evaluated for anti-fibrosis effect in a bleomycin challenged mice lung fibrosis model. Upon treatment with II [R3 = [bis(2-hydroxyethyl)amino]; R4 = (3-chloro-4-methoxy-phenyl)], the in vivo ATX activity in both lung homogenate and broncheoalveolar fluid (BALF) sample was significantly down-regulated. Furthermore, the gene expression of pro-fibrotic cytokines transforming growth factor-β (TGF-β), interleukin- 6 (IL-6) and tumor necrosis factor-α (TNF-α) in lung tissue was reduced to normal level. Collectively, the promising biol. effects may advocate potential application of II [R3 = [bis(2-hydroxyethyl)amino]; R4 = (3-chloro-4-methoxy-phenyl)] in fibrosis relevant diseases.

Safety of 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Lei, Hongrui team published research on European Journal of Medicinal Chemistry in 2022 | 5382-16-1

Name: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Name: 4-Piperidinol.

Lei, Hongrui;Wang, Xinyu;Zhao, Guolong;Li, Tong;Cui, Youbao;Wu, Huinan;Yang, Jing;Jiang, Nan;Zhai, Xin research published 《 Design, synthesis and promising anti-tumor efficacy of novel imidazo[1,2-a]pyridine derivatives as potent autotaxin allosteric inhibitors》, the research content is summarized as follows. Aiming to track the potential antitumor effect of novel allosteric autotaxin (ATX) inhibitors, a hybrid strategy was utilized by merging ATX inhibitors PF-8380 and GLPG1690, while the piperazinyl group in GLPG1690 was replaced with benzene ring to furnish imidazo[1,2-a]pyridine derivatives I [R1 = 3,5-diCl, 4-CF3, 3,4-di-F; R2 = L-Prolinol, 4-hydroxyethylpiperazinyl, morpholine, etc.; R3 = CH2, C(O); X = O, N]. Based on ATX enzymic assay, further changed the substituents within benzyl carbamate moiety and tuned the carbamate linker to urea group. Delightfully, compound I [R1 = 3,5-diCl, R2 = 4-hydroxyethylpiperazinyl] was identified as the optimal ATX inhibitor with an IC50 value of 3.4 nM. Compound I [R1 = 3,5-diCl, R2 = 4-hydroxyethylpiperazinyl] exerted the most impressive antitumor effects, especially on Hep3B (0.58μM) and RAW264.7 (0.63μM) cell lines highly expressing ATX mRNA. Moreover, compound I [R1 = 3,5-diCl, R2 = 4-hydroxyethylpiperazinyl] could dose-dependently suppress the RAW264.7 cell migration rate in wound healing assay and significantly inhibit RAW264.7 cell colony formation. Meanwhile, compound I [R1 = 3,5-diCl, R2 = 4-hydroxyethylpiperazinyl] was capable of inducing weak to moderate apoptosis and achieved notable G2 phase arrest on RAW264.7 cells. Compound I [R1 = 3,5-diCl, R2 = 4-hydroxyethylpiperazinyl] may serve as a novel lead to probe possible role of ATX allosteric inhibitors in tumor diseases.

Name: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Armani, Elisabetta team published research on Journal of Medicinal Chemistry in 2022 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Quality Control of 5382-16-1

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Quality Control of 5382-16-1.

Armani, Elisabetta;Capaldi, Carmelida;Bagnacani, Valentina;Saccani, Francesca;Aquino, Giancarlo;Puccini, Paola;Facchinetti, Fabrizio;Martucci, Cataldo;Moretto, Nadia;Villetti, Gino;Patacchini, Riccardo;Civelli, Maurizio;Hurley, Chris;Jennings, Andrew;Alcaraz, Lilian;Bloomfield, Dawn;Briggs, Michael;Daly, Stephen;Panchal, Terry;Russell, Vince;Wicks, Sharon;Finch, Harry;Fitzgerald, Mary;Fox, Craig;Delcanale, Maurizio research published 《 Design, Synthesis, and Biological Characterization of Inhaled p38α/β MAPK Inhibitors for the Treatment of Lung Inflammatory Diseases》, the research content is summarized as follows. The identification of novel inhaled p38α/β mitogen-activated protein kinases (MAPK) (MAPK14/11) inhibitors suitable for the treatment of pulmonary inflammatory conditions has been described. A rational drug design approach started from the identification of a novel tetrahydronaphthalene series, characterized by nanomolar inhibition of p38α with selectivity over p38γ and p38δ isoforms. SAR optimization of 1c is outlined, where improvements in potency against p38α and ligand-enzyme dissociation kinetics led to several compounds showing pronounced anti-inflammatory effects in vitro (inhibition of TNFα release). Targeting of the defined physicochem. properties allowed the identification of compounds 3h, 4e, and 4f, which showed, upon intratracheal instillation, low plasma levels, prolonged lung retention, and anti-inflammatory effects in a rat acute model of a bacterial endotoxin-induced pulmonary inflammation. Compound 4e (I), in particular, displayed remarkable efficacy and duration of action and was selected for progression in disease models of asthma and chronic obstructive pulmonary disease (COPD).

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Quality Control of 5382-16-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Bai, Jixiang team published research on Organic Letters in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Application In Synthesis of 5382-16-1

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Application In Synthesis of 5382-16-1.

Bai, Jixiang;Wang, Tianxin;Dai, Botao;Liu, Qingchao;Yu, Peiyuan;Jia, Tiezheng research published 《 Radical Anion Promoted Chemoselective Cleavage of Csp2-S Bond Enables Formal Cross-Coupling of Aryl Methyl Sulfones with Alcohols》, the research content is summarized as follows. A novel formal cross-coupling of aryl Me sulfones and alcs. affording alkyl aryl ethers ROR1 [R = n-Bu, Bn, (CH2)2cyclohexyl, etc.; R1 = Ph, 1-naphthyl, 2-pyridyl, etc.] via an SRN1 pathway was developed. Two marketed antitubercular drugs were efficiently prepared employing this approach as the key step. A dimsyl-anion initiated radical chain process was revealed as the major pathway. DFT calculations indicate that the formation of a radical anion via nucleophilic addition of alkoxide to the aryl radical was the key step in determining the observed chemoselectivity.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Application In Synthesis of 5382-16-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Bata, Nicole team published research on Journal of Medicinal Chemistry in 2022 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Quality Control of 5382-16-1

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Quality Control of 5382-16-1.

Bata, Nicole;Chaikuad, Apirat;Bakas, Nicole A.;Limpert, Allison S.;Lambert, Lester J.;Sheffler, Douglas J.;Berger, Lena M.;Liu, Guoxiong;Yuan, Cunxiang;Wang, Li;Peng, Yi;Dong, Jing;Celeridad, Maria;Layng, Fabiana;Knapp, Stefan;Cosford, Nicholas D. P. research published 《 Inhibitors of the Hippo Pathway Kinases STK3/MST2 and STK4/MST1 Have Utility for the Treatment of Acute Myeloid Leukemia》, the research content is summarized as follows. Serine/threonine-protein kinases 3 and 4 (STK3 and STK4, resp.) are key components of the Hippo signaling pathway, which regulates cell proliferation and death and provides a potential therapeutic target for acute myeloid leukemia (AML). Herein, we report the structure-based design of a series of pyrrolopyrimidine derivatives as STK3 and STK4 inhibitors. In an initial screen, the compounds exhibited low nanomolar potency against both STK3 and STK4. Crystallization of compound 6 with STK4 revealed two-point hinge binding in the ATP-binding pocket. Further characterization and anal. demonstrated that compound 20 (SBP-3264) specifically inhibited the Hippo signaling pathway in cultured mammalian cells and possessed favorable pharmacokinetic and pharmacodynamic properties in mice. We show that genetic knockdown and pharmacol. inhibition of STK3 and STK4 suppress the proliferation of AML cells in vitro. Thus, SBP-3264 is a valuable chem. probe for understanding the roles of STK3 and STK4 in AML and is a promising candidate for further advancement as a potential therapy.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Quality Control of 5382-16-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Top Picks: new discover of 1,4-Dioxa-8-azaspiro[4.5]decane

Computed Properties of C7H13NO2. Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.

Wang, YZ; Lin, WJ; Zou, JY; Yu, W; Liu, XY in [Wang, Yu-Zhao; Lin, Wu-Jie; Zou, Jian-Yu; Yu, Wei; Liu, Xue-Yuan] Lanzhou Univ, Coll Chem & Chem Engn, State Key Lab Appl Organ Chem, Lanzhou 730000, Peoples R China published Preparation of Oxindoles via Visible-Light-Induced Amination/Cyclization of Arylacrylamides with Alkyl Amines in 2020, Cited 68. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7. “Computed Properties of C7H13NO2.

The cascade amination/cyclization ofN-arylacrylamides with alkyl amines under visible-light photoredox catalysis is realized via intermediacy of aminium radicals. The aminium radicals are generated by a two-step sequence which involves N-chlorination of alkyl amines and subsequent reductive N-Cl cleavage. This method provides a convenient access to aminated oxindoles.

Computed Properties of C7H13NO2. Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Discovery of 1,4-Dioxa-8-azaspiro[4.5]decane

Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.. Computed Properties of C7H13NO2

Kuzey, NG; Ozgur, M; Cemaloglu, R; Asmafiliz, N; Kilic, Z; Acik, L; Aydin, B; Hokelek, T in [Kuzey, Nur Guven; Ozgur, Mehtap; Cemaloglu, Resit; Asmafiliz, Nuran; Kilic, Zeynel] Ankara Univ, Dept Chem, TR-06100 Ankara, Turkey; [Acik, Leyla; Aydin, Betul] Gazi Univ, Dept Biol, TR-06500 Ankara, Turkey; [Hokelek, Tuncer] Hacettepe Univ, Dept Phys, TR-06800 Ankara, Turkey published Mono- and dispirocyclotriphosphazenes containing 4-bromobenzyl pendant arm(s): Synthesis, spectroscopy, crystallography and biological activity studies in 2020, Cited 40. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7. “Computed Properties of C7H13NO2.

The N/N donor-type bromobenzyldiamines (1-3) were successively prepared by reduction of Schiff bases formed as a result of condensation reactions of 4-bromobenzaldehyde with aliphatic diamines. The Cl exchange reactions of hexachlorocyclotriphosphazene (HCCP; trimer; N3P3Cl6; 4) with the bidentate ligands (1-3) produced the new monospiro- (5-7) and dispirocyclotriphosphazenes (8-13) containing 4-bromo-benzyl pendant arm(s). The tetrachloro phosphazenes (5-7) were reacted with pyrrolidine, tetra-1,4-dioxa-8-azaspiro [4.5]decane (DASD) and piperidine to give the tetraamino substituted mono-spirophosphazenes (5a-7c). The spectral analyses of all the phosphazenes were made using appropriate spectroscopic methods; such as FTIR, H-1, C-13, P-31 NMR and ESI-MS. The molecular and crystal structures of 5, 6, 7 and 12 were also determined by X-ray crystallography. On the other hand, the antimicrobial activities of the phosphazenes were evaluated against G (-) and G (+) bacteria and fungi. Some of the tetraaminophosphazenes were found to be very active against several bacteria and fungi. Besides, the interactions of the cyclotriphosphazenes with plasmid DNA were investigated using agarose gel electrophoresis. (C) 2020 Elsevier B.V. All rights reserved.

Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.. Computed Properties of C7H13NO2

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem