Patel, Piyush A. team published research on Marine Drugs in 2021 | 5382-16-1

Category: piperidines, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Category: piperidines.

Patel, Piyush A.;Bruun, Tanja;Ilina, Polina;Makkyla, Heidi;Lempinen, Antti;Yli-Kauhaluoma, Jari;Tammela, Paivi;Kiuru, Paula S. research published 《 Synthesis and Cytotoxicity Evaluation of Spirocyclic Bromotyrosine Clavatadine C Analogs》, the research content is summarized as follows. Marine-originated spirocyclic bromotyrosines are considered as promising scaffolds for new anticancer drugs. In a continuation of research to develop potent and more selective anticancer compounds, authors synthesized a library of 32 spirocyclic clavatadine analogs by replacing the agmatine, i.e., 4-(aminobutyl)guanidine, side chain with different substituents. These compounds were tested for cytotoxicity against skin cancer using the human melanoma cell line (A-375) and normal human skin fibroblast cell line (Hs27). The highest cytotoxicity against the A-375 cell line was observed for dichloro compound I (CC50 0.4 ± 0.3μM, selectivity index (SI) 2). The variation of selectivity ranged from SI 0.4 to reach 2.4 for the pyridin-2-yl derivative II and hydrazide analog of 2-picoline III. The structure-activity relationships of the compounds in respect to cytotoxicity and selectivity toward cancer cell lines are discussed.

Category: piperidines, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Pipal, Robert W. team published research on Nature (London, United Kingdom) in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Safety of 4-Piperidinol

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Safety of 4-Piperidinol.

Pipal, Robert W.;Stout, Kenneth T.;Musacchio, Patricia Z.;Ren, Sumei;Graham, Thomas J. A.;Verhoog, Stefan;Gantert, Liza;Lohith, Talakad G.;Schmitz, Alexander;Lee, Hsiaoju S.;Hesk, David;Hostetler, Eric D.;Davies, Ian W.;MacMillan, David W. C. research published 《 Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery》, the research content is summarized as follows. Positron emission tomog. (PET) radioligands (radioactively labeled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncol. targets1. Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands2, yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalyzed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Me groups are among the most prevalent structural elements found in bioactive mols., and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labeled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clin. used compounds [11C]UCB-J and [11C]PHNO. We further outline the direct utility of this protocol for preclin. PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clin. imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Safety of 4-Piperidinol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Logvinenko, Ivan G. team published research on Journal of Fluorine Chemistry in 2022 | 5382-16-1

Name: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Name: 4-Piperidinol.

Logvinenko, Ivan G.;Kondratov, Ivan S.;Pridma, Stanislav O.;Tolmachova, Nataliya A.;Morev, Roman N.;Dolovanyuk, Violetta G.;Boretskyi, Andrii L.;Stepaniuk, Roman O.;Trofymchuk, Serhii A.;Muck-Lichtenfeld, Christian;Daniliuc, Constantin G.;Haufe, Gunter research published 《 Synthesis and physical chemical properties of CF3O-containing secondary amines-Perspective building blocks for drug discovery》, the research content is summarized as follows. Conformational and electronic effects of the trifluoromethoxy group make it attractive to be introduced in biorelevant structures. A mini-library of CF3O-substituted piperidines, pyrrolidines and azetidines was synthesized in 4-5 steps from com. amino alcs. Comparison of the measured pKa– and log D7.4 values of selected regioisomeric CF3O piperidines with the corresponding CF3- and MeO analogs shows that the effect on the acid/base properties and lipophilicity is rather complex and depends of the substitution position and the conformation of the mols. For the most stable conformers of β-OCF3 compounds 2-(trifluoromethoxymethyl)piperidine and 3-trifloromethoxypiperidine, DFT calculations and X-ray data for 2-(trifluoromethoxymethyl)piperidine show a favored gauche-arrangement with regard to the amino group.

Name: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Luo, Rongshuang team published research on Journal of Enzyme Inhibition and Medicinal Chemistry in 2021 | 5382-16-1

Name: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Name: 4-Piperidinol.

Luo, Rongshuang;Wang, Zhongyuan;Luo, Dali;Qin, Yumei;Zhao, Chunshen;Yang, Di;Lu, Tian;Zhou, Zhixu;Huang, Zhuyan research published 《 Design, synthesis, and biological evaluation of novel triazoloquinazolinone derivatives as SHP2 protein inhibitors》, the research content is summarized as follows. A novel series of triazoloquinazolinone derivatives were designed, synthesized, and evaluated for their in vitro biol. activities against the SHP2 protein. Moreover, some compounds were evaluated against A375 cells. The results revealed that target compounds possessed moderate to excellent inhibitory activity against SHP2 protein, whereas compounds , , , , and have strong antiproliferative activity on A375 cells. The compound showed remarkable cytotoxicity against A375 cells and a strong inhibitory effect against SHP2 protein when compared with . The structure-activity relationships (SARs) indicated that electron-donating groups (EDGs) on Ph rings are beneficial for improving the antitumor activity; compounds with a hydroxyl substituent at the 2-position of Ph ring exhibited superior activities than compounds with a substituent at the 4-position. In addition, compound displayed improved physicochem. properties as well as metabolic stability compared to . Our efforts identified as a promising SHP2 protein inhibitor, warranting its further investigation.

Name: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ma, Huijun team published research on Journal of Medicinal Chemistry in 2022 | 5382-16-1

Formula: C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Formula: C5H11NO.

Ma, Huijun;Qian, Anran;Zheng, Yazhou;Meng, Xin;Wang, Ting;Zhang, Yinyong;Sun, Lulu;Zou, Feng;Zhao, Bomei;Zhang, Shuhua;Zhang, Dan;Yang, Yushe research published 《 Design, Synthesis, and Structure-Activity Relationship Studies of Bisamide Derivatives of Amphotericin B with Potent Efficacy and Low Toxicity》, the research content is summarized as follows. Amphotericin B (AMB, 1) is the most powerful antibiotic in treating potentially life-threatening invasive fungal infections (IFIs), though severe toxicity derived from self-aggregation greatly limits its clin. application. Herein, we applied a bisamidation strategy at the C16-COOH and C3′-NH2 to improve the therapeutic properties by suppressing self-aggregation. It was found that basic amino groups at the residue of C16 amide were beneficial to activity, while lipophilic fragments contributed to toxicity reduction Addnl., N-methyl-amino acetyl and amino acetyl moieties at C3′ amide could help keep the fungistatic effectiveness. The modification work culminated in the discovery of 36 (I) (ED50 = 0.21 mg/kg), which exerted a 1.5-fold stronger antifungal efficacy than amphamide, the optimal derivative theretofore, in mice, low self-aggregation propensity, and thus low acute toxicity. With the improvement in therapeutic index and good PK profile, 36 is promising for further development as a second-generation polyene antifungal agent.

Formula: C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ma, Zhenkun team published research on Journal of Medicinal Chemistry in 2022 | 5382-16-1

Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Application of C5H11NO.

Ma, Zhenkun;He, Shijie;Yuan, Ying;Zhuang, Zhijun;Liu, Yu;Wang, Huan;Chen, Jing;Xu, Xiangyi;Ding, Charles;Molodtsov, Vadim;Lin, Wei;Robertson, Gregory T.;Weiss, William J.;Pulse, Mark;Nguyen, Phung;Duncan, Leonard;Doyle, Timothy;Ebright, Richard H.;Lynch, Anthony Simon research published 《 Design, Synthesis, and Characterization of TNP-2198, a Dual-Targeted Rifamycin-Nitroimidazole Conjugate with Potent Activity against Microaerophilic and Anaerobic Bacterial Pathogens》, the research content is summarized as follows. TNP-2198, a stable conjugate of a rifamycin pharmacophore and a nitroimidazole pharmacophore, has been designed, synthesized, and evaluated as a novel dual-targeted antibacterial agent for the treatment of microaerophilic and anaerobic bacterial infections. TNP-2198 exhibits greater activity than a 1:1 M mixture of the parent drugs and exhibits activity against strains resistant to both rifamycins and nitroimidazoles. A crystal structure of TNP-2198 bound to a Mycobacterium tuberculosis RNA polymerase transcription initiation complex reveals that the rifamycin portion of TNP-2198 binds to the rifamycin binding site on RNAP and the nitroimidazole portion of TNP-2198 interacts directly with the DNA template-strand in the RNAP active-center cleft, forming a hydrogen bond with a base of the DNA template strand. TNP-2198 is currently in Phase 2 clin. development for the treatment of Helicobacter pylori infection, Clostridioides difficile infection, and bacterial vaginosis.

Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Malamas, Michael S. team published research on ChemMedChem in | 5382-16-1

Safety of 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Safety of 4-Piperidinol.

Malamas, Michael S.;Lamani, Manjunath;Farah, Shrouq I.;Mohammad, Khadijah A.;Miyabe, Christina Yume;Rajarshi, Girija;Wu, Simiao;Zvonok, Nikolai;Chandrashekhar, Honrao;Wood, JodiAnne;Makriyannis, Alexandros research published 《 Design and Synthesis of Highly Potent and Specific ABHD6 Inhibitors》, the research content is summarized as follows. Fine-tuning than complete disruption of 2-arachidonoylglycerol (2-AG) metabolism in the brain represents a promising pharmacol. approach to limit potential untoward effects associated with complete blockade of monoacylglycerol lipase (MGL), the primary hydrolase of 2-AG. This could be achieved through a/b-hydrolase domain containing 6 (ABHD6) inhibition, which will provide a smaller and safer contribution to 2-AG regulation in the brain. Pharmacol. studies with ABHD6 inhibitors have recently been reported, where modulation of ABHD6 activity either through CB1R-dependent or CB1R-independent processes showed promise in preclin. models of epilepsy, neuropathic pain and inflammation. Furthermore in the periphery, ABHD6 modulates 2-AG and other fatty acid monoacylglycerols (MAGs) and is implicated in Type-2 diabetes, metabolic syndrome and potentially other diseases. Herein, we report the discovery of single-digit nanomolar potent and highly specific ABHD6 inhibitors with >1000-fold selectivity against MGL and FAAH. The new ABHD6 inhibitors provide early leads to develop therapeutics for neuroprotection and the treatment of inflammation and diabetes.

Safety of 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Mambwe, Dickson team published research on ACS Medicinal Chemistry Letters in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Computed Properties of 5382-16-1

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Computed Properties of 5382-16-1.

Mambwe, Dickson;Kumar, Malkeet;Ferger, Richard;Taylor, Dale;Njoroge, Mathew;Coertzen, Dina;Reader, Janette;van der Watt, Mariette;Birkholtz, Lyn-Marie;Chibale, Kelly research published 《 Structure-Activity Relationship Studies Reveal New Astemizole Analogues Active against Plasmodium falciparum In Vitro》, the research content is summarized as follows. In the context of drug repositioning and expanding the existing structure-activity relationship around astemizole (AST), a new series of analogs were designed, synthesized, and evaluated for their antiplasmodium activity. Among 46 analogs tested, compounds 21, 30, and 33 displayed high activities against asexual blood stage parasites (PfNF54 IC50 = 0.025-0.043μM), whereas amide compound 46 addnl. showed activity against late-stage gametocytes (stage IV/V; PfLG IC50 = 0.6 ± 0.1μM) and 860-fold higher selectivity over hERG (46, SI = 43) compared to AST. Several analogs displaying high solubility (Sol > 100μM) and low cytotoxicity in the Chinese hamster ovary (SI > 148) cell line have also been identified.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Computed Properties of 5382-16-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Li, Zheng team published research on Bioorganic & Medicinal Chemistry in 2021 | 5382-16-1

HPLC of Formula: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. HPLC of Formula: 5382-16-1.

Li, Zheng;Guo, Ming;Cao, Meng;Zhao, Tianming;Li, Mingzhu;Zhai, Xin research published 《 Discovery and antitumor activity of Benzo[d]imidazol-containing 2,4-diarylaminopyrimidine analogues as ALK inhibitors with mutation-combating effects》, the research content is summarized as follows. To address drug resistance caused by ALK kinase mutations, a series of novel 2,4-diarylaminopyrimidine (DAAP) analogs were designed by incorporating 1H-benzo[d]imidazol motif onto the maternal framework. All compounds were efficiently synthesized and antiproliferative activities against Karpas299, H2228 and A549 cell lines were evaluated by MTT assay. Delightly, the most promising derivative H-11 was detected with IC50 values of 0.016μM and 0.099μM against ALK- pos. Karpas299 and H2228 cells. Meanwhile, H-11 displayed encouraging enzymic inhibitory potency with IC50 values of 2.7 nM, 3.8 nM and 5.7 nM toward ALKWT, ALKL1196M and ALKG1202R, resp. Ultimately, the binding modes of optimal H-11 with ALK wild-type and mutants were ideally established which further confirmed the structural basis in accordance with the SARs anal.

HPLC of Formula: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Liu, Liu team published research on Journal of Medicinal Chemistry in 2021 | 5382-16-1

Name: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Name: 4-Piperidinol.

Liu, Liu;Yao, Zhiying;Wang, Shijun;Xie, Tao;Wu, Guoqing;Zhang, Honghan;Zhang, Pu;Wu, Yaojun;Yuan, Haoliang;Sun, Hongbin research published 《 Syntheses, Biological Evaluations, and Mechanistic Studies of Benzo[c][1,2,5]oxadiazole Derivatives as Potent PD-L1 Inhibitors with In Vivo Antitumor Activity》, the research content is summarized as follows. A series of novel benzo[c][1,2,5]oxadiazole derivatives were designed, synthesized, and biol. evaluated as inhibitors of PD-L1. Among them, compound I [R = H] exhibited 1.8 nM IC50 value in a homogeneous time-resolved fluorescence (HTRF) assay, which was 20-fold more potent than the lead compound BMS-1016 (II). In the surface plasmon resonance (SPR) assay, compound I [R = H] bound to human PD-L1 (hPD-L1) with a KD value of 3.34 nM, without showing any binding to hPD-1. In the cell-based coculture assay, compound I [R = H] blocked PD-1/PD-L1 interaction with an EC50 value of 375 nM, while BMS-1016 had an EC50 value of 2075 nM. Moreover, compound I [R = Et] , an ester prodrug of compound I [R = H], was orally bioavailable and displayed significant antitumor effects in tumor models of syngeneic and PD-L1 humanized mice. Mechanistically, compound I [R = Et] exhibited significant in vivo antitumor effects probably through promoting antitumor immunity. Together, this series of benzoxadiazole PD-L1 inhibitors holds promise for tumor immunotherapy. Preclin. trials with selected compounds are ongoing in our laboratory

Name: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem