Reiberger, Robert team published research on International Journal of Molecular Sciences in 2021 | 5382-16-1

SDS of cas: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. SDS of cas: 5382-16-1.

Reiberger, Robert;Radilova, Katerina;Kral, Michal;Zima, Vaclav;Majer, Pavel;Brynda, Jiri;Dracinsky, Martin;Konvalinka, Jan;Kozisek, Milan;Machara, Ales research published 《 Synthesis and In Vitro Evaluation of C-7 and C-8 Luteolin Derivatives as Influenza Endonuclease Inhibitors》, the research content is summarized as follows. The part of the influenza polymerase PA subunit featuring endonuclease activity is a target for anti-influenza therapies, including the FDA-approved drug Xofluza. A general feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions located in the enzyme′s catalytic site. Previously, we screened a panel of flavonoids for PA inhibition and found luteolin and its C-glucoside orientin to be potent inhibitors. Through structural anal., we identified the presence of a 3′,4′-dihydroxyphenyl moiety as a crucial feature for sub-micromolar inhibitory activity. Here, we report results from a subsequent investigation exploring structural changes at the C-7 and C-8 positions of luteolin. Exptl. IC50 values were determined by AlphaScreen technol. The most potent inhibitors were C-8 derivatives with inhibitory potencies comparable to that of luteolin. Bio-isosteric replacement of the C-7 hydroxyl moiety of luteolin led to a series of compounds with one-order-of-magnitude-lower inhibitory potencies. Using X-ray crystallog., we solved structures of the wild-type PA-N-terminal domain and its I38T mutant in complex with orientin at 1.9 Å and 2.2 Å resolution, resp.

SDS of cas: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Renk, Dana R. team published research on European Journal of Medicinal Chemistry in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Electric Literature of 5382-16-1

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Electric Literature of 5382-16-1.

Renk, Dana R.;Skraban, Marcel;Bier, Dirk;Schulze, Annette;Wabbals, Erika;Wedekind, Franziska;Neumaier, Felix;Neumaier, Bernd;Holschbach, Marcus research published 《 Design, synthesis and biological evaluation of Tozadenant analogues as adenosine A2A receptor ligands》, the research content is summarized as follows. With the aim to obtain potent adenosine A2A receptor (A2AR) ligands, a series of eighteen derivatives of 4-hydroxy-N-(4-methoxy-7-morpholin-4-yl-1,3-benzo[d]thiazol-2-yl)-4-methylpiperidine-1-carboxamide were designed and synthesized. The target compounds were obtained by a chem. building block principle that involved reaction of the appropriate aminobenzothiazole Ph carbamates with either com. available or readily synthesized functionalized piperidines. Ki values for human A2AR ranged from 2.4 to 38 nM, with more than 120-fold selectivity over A1 receptors for all evaluated compounds except 4-Fluoro-4-(hydroxymethyl)-N-(4-methoxy-7-morpholinobenzo[d]thiazol-2-yl)piperidine-1-carboxamide which had a Ki of 361 nM and 18-fold selectivity. The most potent fluorine-containing derivatives exhibited Ki values of 4.9 nM, 3.6 nM and 2.8 nM for the human A2AR. Interestingly, the corresponding values for rat A2AR were found to be four to five times higher. Their binding to A2AR was further confirmed by radiolabeling with 18F and in vitro autoradiog. in rat brain slices, which showed almost exclusive striatal binding and complete displacement by the A2AR antagonist ZM 241385. Authors conclude that these compounds represent potential candidates for the visualization of the A2A receptor and open pathways to novel therapeutic treatments of neurodegenerative disorders or cancer.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Electric Literature of 5382-16-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Mishra, Sanket J. team published research on Journal of Medicinal Chemistry in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Quality Control of 5382-16-1

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Quality Control of 5382-16-1.

Mishra, Sanket J.;Liu, Weiya;Beebe, Kristin;Banerjee, Monimoy;Kent, Caitlin N.;Munthali, Vitumbiko;Koren, John III;Taylor, John A. III;Neckers, Leonard M.;Holzbeierlein, Jeffrey;Blagg, Brian S. J. research published 《 The Development of Hsp90β-Selective Inhibitors to Overcome Detriments Associated with pan-Hsp90 Inhibition》, the research content is summarized as follows. The 90 kD heat shock proteins (Hsp90) are mol. chaperones that are responsible for the folding of select proteins, many of which are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-mol. inhibitors of Hsp90 have entered clin. trials for the treatment of cancer, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms, which may lead to adverse effects. The development of Hsp90 isoform-selective inhibitors represents an alternative approach toward the treatment of cancer and may limit some of these detriments. Described herein, is a structure-based approach to develop isoform-selective inhibitors of Hsp90β, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90β-selective inhibitors as a method for overcoming the detriments associated with pan-inhibition.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Quality Control of 5382-16-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Morgen, Michael team published research on Chemistry – A European Journal in 2021 | 5382-16-1

HPLC of Formula: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. HPLC of Formula: 5382-16-1.

Morgen, Michael;Fabrowski, Piotr;Amtmann, Eberhard;Gunkel, Nikolas;Miller, Aubry K. research published 《 Inclusion Complexes of Gold(I)-Dithiocarbamates with β-Cyclodextrin: A Journey from Drug Repurposing towards Drug Discovery》, the research content is summarized as follows. The gold(I)-dithiocarbamate (dtc) complex [Au(N,N-diethyl)dtc]2 was identified as the active cytotoxic agent in the combination treatment of sodium aurothiomalate and disulfiram on a panel of cancer cell lines. In addition to demonstrating pronounced differential cytotoxicity to these cell lines, the gold complex showed no cross-resistance in therapy-surviving cancer cells. In the course of a medicinal chem. campaign on this class of poorly soluble gold(I)-dtc complexes, >35 derivatives were synthesized and x-ray crystallog. was used to examine structural aspects of the dtc moiety. A group of hydroxy-substituted complexes has an improved solubility profile, and it was found that these complexes form 2 : 1 host-guest inclusion complexes with β-cyclodextrin (CD), exhibiting a rarely observed “tail-to-tail” arrangement of the CD cones. Formulation of a hydroxy-substituted gold(I)-dtc complex with excess sulfobutylether-β-CD prevents the induction of mitochondrial reactive oxygen species, which is a major burden in the development of metallodrugs.

HPLC of Formula: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Morimoto, Yoshihiko team published research on Organic Letters in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., HPLC of Formula: 5382-16-1

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. HPLC of Formula: 5382-16-1.

Morimoto, Yoshihiko;Hamada, Moe;Takano, Shotaro;Mochizuki, Katsufumi;Kochi, Takuya;Kakiuchi, Fumitoshi research published 《 2:1 versus 1:1 Coupling of Alkylacetylenes with Secondary Amines: Selectivity Switching in 8-Quinolinolato Rhodium Catalysis》, the research content is summarized as follows. Both 2:1 and 1:1 couplings of alkylacetylenes with secondary amines were achieved using 8-quinolinolato (1,5-cyclooctadiene)rhodium catalysts and CsF. The 2:1/1:1 selectivity was switched by choosing the reaction solvent. In DMA, an unprecedented 2:1 coupling reaction of alkylacetylenes with amines proceeded to give 2-aminodiene products. One-pot 2:1 coupling/reduction provided rapid access to various allylamines, while one-pot coupling/hydrolysis gave enones as products. In toluene, anti-Markovnikov hydroamination occurred under relatively mild conditions to give 1:1 coupling products.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., HPLC of Formula: 5382-16-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Nagare, Yadav Kacharu team published research on Journal of Organic Chemistry in 2021 | 5382-16-1

SDS of cas: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. SDS of cas: 5382-16-1.

Nagare, Yadav Kacharu;Shah, Imtiyaz Ahmad;Yadav, Jyothi;Pawar, Amol Prakash;Choudhary, Rahul;Chauhan, Pankaj;Kumar, Indresh research published 《 Electrochemical Oxidative Coupling Between Benzylic C(sp3)-H and N-H of Secondary Amines: Rapid Synthesis of α-Amino α-Aryl Esters》, the research content is summarized as follows. An intermol. electrochem. coupling between the benzylic C(sp3)-H bond and various secondary amines is reported. The electronic behavior of two electronically rich units viz the α-position of α-aryl acetates and amines was engineered electrochem., thus facilitating their reactivity for the direct access of α-amino esters. A series of acyclic/cyclic secondary amines and α-aryl acetates were tested to furnish the corresponding α-amino esters with high yields (up to 92%) under mild conditions.

SDS of cas: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Nara, Susheel J. team published research on Journal of Medicinal Chemistry in 2022 | 5382-16-1

Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Application of C5H11NO.

Nara, Susheel J.;Jogi, Srinivas;Cheruku, Srinivas;Kandhasamy, Sarkunam;Jaipuri, Firoz;Kathi, Pavan Kalyan;Reddy, Subba;Sarodaya, Sanket;Cook, Erica M.;Wang, Tao;Sitkoff, Doree;Rossi, Karen A.;Ruzanov, Max;Kiefer, Susan E.;Khan, Javed A.;Gao, Mian;Reddy, Satyanarayana;Sivaprasad LVJ, Sankara;Sane, Ramola;Mosure, Kathy;Zhuo, Xiaoliang;Cao, Gary G.;Ziegler, Milinda;Azzara, Anthony;Krupinski, John;Soars, Matthew G.;Ellsworth, Bruce A.;Wacker, Dean A. research published 《 Discovery of BMS-986339, a Pharmacologically Differentiated Farnesoid X Receptor Agonist for the Treatment of Nonalcoholic Steatohepatitis》, the research content is summarized as follows. While several farnesoid X receptor (FXR) agonists under clin. investigation for the treatment of nonalcoholic steatohepatitis (NASH) have shown beneficial effects, adverse effects such as pruritus and elevation of plasma lipids have limited their clin. efficacy and approvability. Herein, we report the discovery and preclin. evaluation of compound 32 (BMS-986339), a nonbile acid FXR agonist with a pharmacol. distinct profile relative to our previously reported agonist BMS-986318. Compound 32 exhibited potent in vitro and in vivo activation of FXR, albeit with a context-dependent profile that resulted in tissue-selective effects in vivo. To our knowledge, this is the first report that demonstrates differential induction of Fgf15 in the liver and ileum by FXR agonists in vivo. Compound 32 demonstrated robust antifibrotic efficacy despite reduced activation of certain genes in the liver, suggesting that the addnl. pharmacol. of BMS-986318 does not further benefit efficacy, possibly presenting an opportunity for reduced adverse effects. Further evaluation in humans is warranted to validate this hypothesis.

Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ni, Tingjunhong team published research on Molecules in 2022 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Recommanded Product: 4-Piperidinol

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Recommanded Product: 4-Piperidinol.

Ni, Tingjunhong;Ding, Zichao;Xie, Fei;Hao, Yumeng;Bao, Junhe;Zhang, Jingxiang;Yu, Shichong;Jiang, Yuanying;Zhang, Dazhi research published 《 Design, Synthesis, and In Vitro and In Vivo Antifungal Activity of Novel Triazoles Containing Phenylethynyl Pyrazole Side Chains》, the research content is summarized as follows. A series of triazole derivatives containing phenylethynyl pyrazole moiety as side chain I (R = 4-fluorobenzylaminyl, 4-hydroxypiperidin-1-yl, morpholin-4-yl, etc.) and II (R1 = F, Cl, CN, CF3, OCF3) were designed, synthesized, and most of them exhibited good in vitro antifungal activities. Especially, triazole derivatives I (R = (furan-2-ylmethyl)aminyl) and II (R1 = CN) showed excellent in vitro activities against C. albicans (MIC = 0.125, 0.0625μg/mL), C. neoformans (MIC = 0.125, 0.0625μg/mL), and A. fumigatus (MIC = 8.0, 4.0μg/mL). Triazole derivatives II (R1 = CN) also exerted superior activity to triazole derivatives I (R = (furan-2-ylmethyl)aminyl) and fluconazole in inhibiting hyphae growth of C. albicans and inhibiting drug-resistant strains of C. albicans, and it could reduce fungal burdens in mice kidney at a dosage of 1.0 mg/kg. An in vivo efficacy evaluation indicated that triazole derivatives II (R1 = CN) could effectively protect mice models from C. albicans infection at doses of 0.5, 1.0, and 2.0 mg/kg. These results suggested that triazole derivatives II (R1 = CN) deserves further investigation.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Recommanded Product: 4-Piperidinol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Niu, Ben team published research on Organic Letters in 2022 | 5382-16-1

Formula: C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Formula: C5H11NO.

Niu, Ben;Sachidanandan, Krishnakumar;Blackburn, Bryan G.;Cooke, Maria Victoria;Laulhe, Sebastien research published 《 Photoredox Polyfluoroarylation of Alkyl Halides via Halogen-Atom-Transfer》, the research content is summarized as follows. The first polyfluoroarylation of unactivated alkyl halides RX (R = n-nonyl, cyclohexyl, adamantan-1-yl, 1-[(thiophen-2-yl)carbonyl]piperidin-4-yl, etc.; X = I, Br) e.g., I via halogen-atom-transfer process was described. This method converts primary, secondary, and tertiary alkyl halides into the resp. polyfluoroaryl compounds e.g., 3-(perfluorophenyl)butyl 4-methoxybenzoate in good yields in the presence of amide, carbamate, ester, aromatic and sulfonamide moieties including derivatives of complex bioactive mols. Mechanistic work revealed that this transformation proceeds through an alkyl radical generated after a halogen-atom-transfer.

Formula: C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ou Yang, Cheng-Hsin team published research on European Journal of Organic Chemistry in 2022 | 5382-16-1

Recommanded Product: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Recommanded Product: 4-Piperidinol.

Ou Yang, Cheng-Hsin;Liu, Wan-Hsuan;Yang, Sheng;Chiang, Yao-Yu;Shie, Jiun-Jie research published 《 Copper-Mediated Synthesis of (E)-β-Aminoacrylonitriles from 1,2,3-Triazine and Secondary Amines》, the research content is summarized as follows. A simple protocol for the synthesis of (E)-β-aminoacrylonitriles RCH=CHCN (R = dimethylamino, piperidin-1-yl, imidazol-1-yl, etc.) via Cu(OAc)2-mediated nucleophilic addition of secondary amines such as piperidine, dimethylamine, imidazole, etc. to 1,2,3-triazine and an aerobic oxidation reaction was described. The reactions, which were studied with a broad substrate scope, are effective with cyclic, heterocyclic, aliphatic, allylic, and benzylic amines as well as L-proline derivatives The reactions use catalytic Cu(OAc)2 to promote 1,2,3-triazine addition with various secondary amines, followed by in situ loss of nitrogen and subsequent imine oxidation to generate the corresponding (E)-β-aminoacrylonitriles in good yields with excellent stereoselectivities. These copper(II)-mediated aerobic oxidation reactions proceed under mild reaction conditions by oxidation of the Cu(II) species using mol. oxygen to complete the cycle without the participation of ligand, base or chem. oxidant additives.

Recommanded Product: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem