Wolska-Washer, Anna et al. published their research in Future Oncology in 2019 | CAS: 1095173-27-5

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Application of 1095173-27-5

Glasdegib in the treatment of acute myeloid leukemia was written by Wolska-Washer, Anna;Robak, Tadeusz. And the article was included in Future Oncology in 2019.Application of 1095173-27-5 This article mentions the following:

Pharmacol. inhibition of the Hedgehog pathway significantly enhanced the sensitivity of leukemic cells to cytotoxic drugs. Glasdegib (PF-04449913; DAURISMO is a potent and selective oral inhibitor of the Hedgehog signaling pathway with clin. activity in patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), particularly in combination with chemotherapy. The results of Phase Ib/II studies evaluating safety and efficacy of glasdegib combined with chemotherapy in previously untreated patients with AML or high-risk myelodysplastic syndrome have recently been published. In the BRIGHT AML 1003 study, glasdegib in combination with low-dose cytarabine (LDAC) was well tolerated and demonstrated a significant 54% reduction in mortality compared with LDAC for AML patients. In 2018, the US FDA approved glasdegib in combination with LDAC for the treatment of newly diagnosed patients with AML who are 75 years old or older or who have co-morbidities that preclude use of intensive induction chemotherapy. In the experiment, the researchers used many compounds, for example, 1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5Application of 1095173-27-5).

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Application of 1095173-27-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Lauressergues, Emilie et al. published their research in Pharmacology Research & Perspectives in 2016 | CAS: 1095173-27-5

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives bearing a masked aldehyde function in the 蔚-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Related Products of 1095173-27-5

Pharmacological evaluation of a series of smoothened antagonists in signaling pathways and after topical application in a depilated mouse model was written by Lauressergues, Emilie;Heusler, Peter;Lestienne, Fabrice;Troulier, David;Rauly-Lestienne, Isabelle;Tourette, Amelie;Ailhaud, Marie-Christine;Cathala, Claudie;Tardif, Stephanie;Denais-Lalieve, Delphine;Calmettes, Marie-Therese;Degryse, Anne-Dominique;Dumoulin, Antoine;De Vries, Luc;Cussac, Didier. And the article was included in Pharmacology Research & Perspectives in 2016.Related Products of 1095173-27-5 This article mentions the following:

The Hedgehog (HH) pathway has been linked to the formation of basal cell carcinoma (BCC), medulloblastoma, and other cancers. The recently approved orally active drugs vismodegib (GDC-0449) and sonidegib (LDE-225) were not only efficacious for the treatment of advanced or metastatic BCC by antagonizing the smoothened (SMO) receptor, but also produced important side effects, limiting their use for less invasive BCC. Herein, we compared a large series of SMO antagonists, including GDC-0449 and LDE-225, the clin. tested BMS-833923, CUR-61414, cyclopamine, IPI-926 (saridegib), itraconazole, LEQ-506, LY-2940680 (taladegib), PF-04449913 (glasdegib), and TAK-441 as well as preclin. candidates (PF-5274857, MRT-83) in two SMO-dependent cellular assays and for G-protein activation. We report marked differences in inhibitor potencies between compounds as well as a notable disparity between the G-protein assay and the cellular tests, suggesting that classification of drugs is assay dependent. Furthermore, we explored topical efficacies of SMO antagonists on depilated mice using Gli1 and Ptch1 mRNA quantification in skin as biomarkers of the HH signaling inhibition. This topical model rapidly discriminated drugs in terms of efficacies and potencies for inhibition of both biomarkers. SMO antagonists showed also a large variation in their blood and skin partition, suggesting that some drugs are more favorable for topical application. Overall, our data suggested that in vitro and in vivo efficacious drugs such as LEQ-506 and TAK-441 may be of interest for topical treatment of less invasive BCC with minimal side effects. In the experiment, the researchers used many compounds, for example, 1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5Related Products of 1095173-27-5).

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives bearing a masked aldehyde function in the 蔚-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Related Products of 1095173-27-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Estey, Elihu et al. published their research in Leukemia in 2020 | CAS: 1095173-27-5

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Related Products of 1095173-27-5

Recent drug approvals for newly diagnosed acute myeloid leukemia: gifts or a Trojan horse? was written by Estey, Elihu;Karp, Judith E;Emadi, Ashkan;Othus, Megan;Gale, Robert Peter. And the article was included in Leukemia in 2020.Related Products of 1095173-27-5 This article mentions the following:

Since 2017 the US Food and Drug Administration (FDA) has approved glasdegib, venetoclax, ivosidenib, midostaurin, CPX- 351, and gemtuzumab ozogamicin (GO) to treat persons with newly diagnosed acute myeloid leukemia. The European Medicines Agency (EMA) has done likewise for midostaurin, CPX-351, and GO. While increasing options for persons, particularly older ones, for whom current therapy is unsatisfactory, or simply not given, these approvals raise several concerns. Although the venetoclax and glasdegib approvals were for persons considered “unfit” for intensive induction, the criteria for fitness were not well defined (age 鈮?5 per se being insufficient) and are frequently subjective, making it likely that many subjects in the venetoclax and glasdegib registration trials were fit for intensive induction; for example, none had performance status 3-4. Fitness must be assessed together with the potential efficacy of a proposed therapy. We note the modest complete remission rates and durations in the venetoclax鈥?鈥塰ypomethylating agent trial. Although these formed the basis for FDA approval, it is unclear that better results might not have obtained with聽more intense induction, as several studies, with considerably longer-follow up, have suggested. Hence, we question the venetoclax (and glasdegib) approvals absent randomized comparisons with intense induction. Given the uncertain relation in older individuals between survival and complete remission (CR), much less responses less than CR, we are skeptical of the sole use of these responses in the ivosidenib and venetoclax approvals; we also question the use of survival, without event-free survival, in the glasdegib approval. Noting the midostaurin and CPX-351 approvals included populations not participating in the registration studies we suggest means to address this issue as well as those involving fitness, randomization, and endpoints. In the experiment, the researchers used many compounds, for example, 1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5Related Products of 1095173-27-5).

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Related Products of 1095173-27-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Lauressergues, Emilie et al. published their research in Pharmacology Research & Perspectives in 2016 | CAS: 1095173-27-5

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Related Products of 1095173-27-5

Pharmacological evaluation of a series of smoothened antagonists in signaling pathways and after topical application in a depilated mouse model was written by Lauressergues, Emilie;Heusler, Peter;Lestienne, Fabrice;Troulier, David;Rauly-Lestienne, Isabelle;Tourette, Amelie;Ailhaud, Marie-Christine;Cathala, Claudie;Tardif, Stephanie;Denais-Lalieve, Delphine;Calmettes, Marie-Therese;Degryse, Anne-Dominique;Dumoulin, Antoine;De Vries, Luc;Cussac, Didier. And the article was included in Pharmacology Research & Perspectives in 2016.Related Products of 1095173-27-5 This article mentions the following:

The Hedgehog (HH) pathway has been linked to the formation of basal cell carcinoma (BCC), medulloblastoma, and other cancers. The recently approved orally active drugs vismodegib (GDC-0449) and sonidegib (LDE-225) were not only efficacious for the treatment of advanced or metastatic BCC by antagonizing the smoothened (SMO) receptor, but also produced important side effects, limiting their use for less invasive BCC. Herein, we compared a large series of SMO antagonists, including GDC-0449 and LDE-225, the clin. tested BMS-833923, CUR-61414, cyclopamine, IPI-926 (saridegib), itraconazole, LEQ-506, LY-2940680 (taladegib), PF-04449913 (glasdegib), and TAK-441 as well as preclin. candidates (PF-5274857, MRT-83) in two SMO-dependent cellular assays and for G-protein activation. We report marked differences in inhibitor potencies between compounds as well as a notable disparity between the G-protein assay and the cellular tests, suggesting that classification of drugs is assay dependent. Furthermore, we explored topical efficacies of SMO antagonists on depilated mice using Gli1 and Ptch1 mRNA quantification in skin as biomarkers of the HH signaling inhibition. This topical model rapidly discriminated drugs in terms of efficacies and potencies for inhibition of both biomarkers. SMO antagonists showed also a large variation in their blood and skin partition, suggesting that some drugs are more favorable for topical application. Overall, our data suggested that in vitro and in vivo efficacious drugs such as LEQ-506 and TAK-441 may be of interest for topical treatment of less invasive BCC with minimal side effects. In the experiment, the researchers used many compounds, for example, 1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5Related Products of 1095173-27-5).

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Related Products of 1095173-27-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Estey, Elihu et al. published their research in Leukemia in 2020 | CAS: 1095173-27-5

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Related Products of 1095173-27-5

Recent drug approvals for newly diagnosed acute myeloid leukemia: gifts or a Trojan horse? was written by Estey, Elihu;Karp, Judith E;Emadi, Ashkan;Othus, Megan;Gale, Robert Peter. And the article was included in Leukemia in 2020.Related Products of 1095173-27-5 This article mentions the following:

Since 2017 the US Food and Drug Administration (FDA) has approved glasdegib, venetoclax, ivosidenib, midostaurin, CPX- 351, and gemtuzumab ozogamicin (GO) to treat persons with newly diagnosed acute myeloid leukemia. The European Medicines Agency (EMA) has done likewise for midostaurin, CPX-351, and GO. While increasing options for persons, particularly older ones, for whom current therapy is unsatisfactory, or simply not given, these approvals raise several concerns. Although the venetoclax and glasdegib approvals were for persons considered “unfit” for intensive induction, the criteria for fitness were not well defined (age ≥75 per se being insufficient) and are frequently subjective, making it likely that many subjects in the venetoclax and glasdegib registration trials were fit for intensive induction; for example, none had performance status 3-4. Fitness must be assessed together with the potential efficacy of a proposed therapy. We note the modest complete remission rates and durations in the venetoclax + hypomethylating agent trial. Although these formed the basis for FDA approval, it is unclear that better results might not have obtained with more intense induction, as several studies, with considerably longer-follow up, have suggested. Hence, we question the venetoclax (and glasdegib) approvals absent randomized comparisons with intense induction. Given the uncertain relation in older individuals between survival and complete remission (CR), much less responses less than CR, we are skeptical of the sole use of these responses in the ivosidenib and venetoclax approvals; we also question the use of survival, without event-free survival, in the glasdegib approval. Noting the midostaurin and CPX-351 approvals included populations not participating in the registration studies we suggest means to address this issue as well as those involving fitness, randomization, and endpoints. In the experiment, the researchers used many compounds, for example, 1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5Related Products of 1095173-27-5).

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Related Products of 1095173-27-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Lauressergues, Emilie et al. published their research in Pharmacology Research & Perspectives in 2016 | CAS: 1095173-27-5

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Related Products of 1095173-27-5

Pharmacological evaluation of a series of smoothened antagonists in signaling pathways and after topical application in a depilated mouse model was written by Lauressergues, Emilie;Heusler, Peter;Lestienne, Fabrice;Troulier, David;Rauly-Lestienne, Isabelle;Tourette, Amelie;Ailhaud, Marie-Christine;Cathala, Claudie;Tardif, Stephanie;Denais-Lalieve, Delphine;Calmettes, Marie-Therese;Degryse, Anne-Dominique;Dumoulin, Antoine;De Vries, Luc;Cussac, Didier. And the article was included in Pharmacology Research & Perspectives in 2016.Related Products of 1095173-27-5 This article mentions the following:

The Hedgehog (HH) pathway has been linked to the formation of basal cell carcinoma (BCC), medulloblastoma, and other cancers. The recently approved orally active drugs vismodegib (GDC-0449) and sonidegib (LDE-225) were not only efficacious for the treatment of advanced or metastatic BCC by antagonizing the smoothened (SMO) receptor, but also produced important side effects, limiting their use for less invasive BCC. Herein, we compared a large series of SMO antagonists, including GDC-0449 and LDE-225, the clin. tested BMS-833923, CUR-61414, cyclopamine, IPI-926 (saridegib), itraconazole, LEQ-506, LY-2940680 (taladegib), PF-04449913 (glasdegib), and TAK-441 as well as preclin. candidates (PF-5274857, MRT-83) in two SMO-dependent cellular assays and for G-protein activation. We report marked differences in inhibitor potencies between compounds as well as a notable disparity between the G-protein assay and the cellular tests, suggesting that classification of drugs is assay dependent. Furthermore, we explored topical efficacies of SMO antagonists on depilated mice using Gli1 and Ptch1 mRNA quantification in skin as biomarkers of the HH signaling inhibition. This topical model rapidly discriminated drugs in terms of efficacies and potencies for inhibition of both biomarkers. SMO antagonists showed also a large variation in their blood and skin partition, suggesting that some drugs are more favorable for topical application. Overall, our data suggested that in vitro and in vivo efficacious drugs such as LEQ-506 and TAK-441 may be of interest for topical treatment of less invasive BCC with minimal side effects. In the experiment, the researchers used many compounds, for example, 1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5Related Products of 1095173-27-5).

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Related Products of 1095173-27-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Estey, Elihu et al. published their research in Leukemia in 2020 | CAS: 1095173-27-5

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Related Products of 1095173-27-5

Recent drug approvals for newly diagnosed acute myeloid leukemia: gifts or a Trojan horse? was written by Estey, Elihu;Karp, Judith E;Emadi, Ashkan;Othus, Megan;Gale, Robert Peter. And the article was included in Leukemia in 2020.Related Products of 1095173-27-5 This article mentions the following:

Since 2017 the US Food and Drug Administration (FDA) has approved glasdegib, venetoclax, ivosidenib, midostaurin, CPX- 351, and gemtuzumab ozogamicin (GO) to treat persons with newly diagnosed acute myeloid leukemia. The European Medicines Agency (EMA) has done likewise for midostaurin, CPX-351, and GO. While increasing options for persons, particularly older ones, for whom current therapy is unsatisfactory, or simply not given, these approvals raise several concerns. Although the venetoclax and glasdegib approvals were for persons considered “unfit” for intensive induction, the criteria for fitness were not well defined (age ≥75 per se being insufficient) and are frequently subjective, making it likely that many subjects in the venetoclax and glasdegib registration trials were fit for intensive induction; for example, none had performance status 3-4. Fitness must be assessed together with the potential efficacy of a proposed therapy. We note the modest complete remission rates and durations in the venetoclax + hypomethylating agent trial. Although these formed the basis for FDA approval, it is unclear that better results might not have obtained with more intense induction, as several studies, with considerably longer-follow up, have suggested. Hence, we question the venetoclax (and glasdegib) approvals absent randomized comparisons with intense induction. Given the uncertain relation in older individuals between survival and complete remission (CR), much less responses less than CR, we are skeptical of the sole use of these responses in the ivosidenib and venetoclax approvals; we also question the use of survival, without event-free survival, in the glasdegib approval. Noting the midostaurin and CPX-351 approvals included populations not participating in the registration studies we suggest means to address this issue as well as those involving fitness, randomization, and endpoints. In the experiment, the researchers used many compounds, for example, 1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5Related Products of 1095173-27-5).

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (cas: 1095173-27-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Related Products of 1095173-27-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem