Yang, Wu et al. published their research in Journal of Medicinal Chemistry in 2000 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.HPLC of Formula: 86069-86-5

Investigating Protein-Ligand Interactions with a Mutant FKBP Possessing a Designed Specificity Pocket was written by Yang, Wu;Rozamus, Leonard W.;Narula, Surinder;Rollins, Carl T.;Yuan, Ruth;Andrade, Lawrence J.;Ram, Mary K.;Phillips, Thomas B.;Van Schravendijk, Marie Rose;Dalgarno, David;Clackson, Tim;Holt, Dennis A.. And the article was included in Journal of Medicinal Chemistry in 2000.HPLC of Formula: 86069-86-5 The following contents are mentioned in the article:

Using structure-based design and protein mutagenesis we have remodeled the FKBP12 ligand binding site to include a sizable, hydrophobic specificity pocket. This mutant (F36V-FKBP) is capable of binding, with low or subnanomolar affinities, novel synthetic ligands possessing designed substituents that sterically prevent binding to the wild-type protein. Using binding and structural anal. of bumped compounds, we show here that the pocket is highly promiscuous-capable of binding a range of hydrophobic alkyl and aryl moieties with comparable affinity. Ligand affinity therefore appears largely insensitive to the degree of occupancy or quality of packing of the pocket. NMR spectroscopic anal. indicates that similar ligands can adopt radically different binding modes, thus complicating the interpretation of structure-activity relationships. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5HPLC of Formula: 86069-86-5).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.HPLC of Formula: 86069-86-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yang, Wu et al. published their research in Journal of Medicinal Chemistry in 2000 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Investigating Protein-Ligand Interactions with a Mutant FKBP Possessing a Designed Specificity Pocket was written by Yang, Wu;Rozamus, Leonard W.;Narula, Surinder;Rollins, Carl T.;Yuan, Ruth;Andrade, Lawrence J.;Ram, Mary K.;Phillips, Thomas B.;Van Schravendijk, Marie Rose;Dalgarno, David;Clackson, Tim;Holt, Dennis A.. And the article was included in Journal of Medicinal Chemistry in 2000.Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

Using structure-based design and protein mutagenesis we have remodeled the FKBP12 ligand binding site to include a sizable, hydrophobic specificity pocket. This mutant (F36V-FKBP) is capable of binding, with low or subnanomolar affinities, novel synthetic ligands possessing designed substituents that sterically prevent binding to the wild-type protein. Using binding and structural anal. of bumped compounds, we show here that the pocket is highly promiscuous-capable of binding a range of hydrophobic alkyl and aryl moieties with comparable affinity. Ligand affinity therefore appears largely insensitive to the degree of occupancy or quality of packing of the pocket. NMR spectroscopic anal. indicates that similar ligands can adopt radically different binding modes, thus complicating the interpretation of structure-activity relationships. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Tran, Kien et al. published their research in Journal of Medicinal Chemistry in 2021 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.SDS of cas: 86069-86-5

Structure-Activity Relationship and Bioactivity of Short Analogues of ELABELA as Agonists of the Apelin Receptor was written by Tran, Kien;Murza, Alexandre;Sainsily, Xavier;Delile, Eugenie;Couvineau, Pierre;Cote, Jerome;Coquerel, David;Peloquin, Maude;Auger-Messier, Mannix;Bouvier, Michel;Lesur, Olivier;Sarret, Philippe;Marsault, Eric. And the article was included in Journal of Medicinal Chemistry in 2021.SDS of cas: 86069-86-5 The following contents are mentioned in the article:

ELABELA (ELA) is the second endogenous ligand of the apelin receptor (APJ). Although apelin-13 and ELA both target APJ, there is limited information on structure-activity relationship (SAR) of ELA. In the present work, we identified the shortest bioactive C-terminal fragment ELA23-32, which possesses high affinity for APJ (Ki 4.6 nM) and produces cardiorenal effects in vivo similar to those of ELA. SAR studies on conserved residues (Leu25, His26, Val29, Pro30, Phe31, Pro32) show that ELA and apelin-13 may interact differently with APJ. His26 and Val29 emerge as important for ELA binding. Docking and binding experiments suggest that Phe31 of ELA may bind to a tight groove distinct from that of Phe13 of Ape13, while the Phe13 pocket may be occupied by Pro32 of ELA. Further characterization of signaling profiles on the Gαi1, Gα12, and β-arrestin2 pathways reveals the importance of aromatic residue at the Phe31 or Pro32 position for receptor activation. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5SDS of cas: 86069-86-5).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.SDS of cas: 86069-86-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Tran, Kien et al. published their research in Journal of Medicinal Chemistry in 2021 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Safety of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Structure-Activity Relationship and Bioactivity of Short Analogues of ELABELA as Agonists of the Apelin Receptor was written by Tran, Kien;Murza, Alexandre;Sainsily, Xavier;Delile, Eugenie;Couvineau, Pierre;Cote, Jerome;Coquerel, David;Peloquin, Maude;Auger-Messier, Mannix;Bouvier, Michel;Lesur, Olivier;Sarret, Philippe;Marsault, Eric. And the article was included in Journal of Medicinal Chemistry in 2021.Safety of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

ELABELA (ELA) is the second endogenous ligand of the apelin receptor (APJ). Although apelin-13 and ELA both target APJ, there is limited information on structure-activity relationship (SAR) of ELA. In the present work, we identified the shortest bioactive C-terminal fragment ELA23-32, which possesses high affinity for APJ (Ki 4.6 nM) and produces cardiorenal effects in vivo similar to those of ELA. SAR studies on conserved residues (Leu25, His26, Val29, Pro30, Phe31, Pro32) show that ELA and apelin-13 may interact differently with APJ. His26 and Val29 emerge as important for ELA binding. Docking and binding experiments suggest that Phe31 of ELA may bind to a tight groove distinct from that of Phe13 of Ape13, while the Phe13 pocket may be occupied by Pro32 of ELA. Further characterization of signaling profiles on the Gαi1, Gα12, and β-arrestin2 pathways reveals the importance of aromatic residue at the Phe31 or Pro32 position for receptor activation. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Safety of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Safety of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Jost, Micha et al. published their research in Chemistry & Biodiversity in 2007 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Recommanded Product: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Synthesis and structural and biological studies of efrapeptin C analogues was written by Jost, Micha;Weigelt, Sven;Huber, Thomas;Majer, Zsuzsanna;Greie, Joerg-Christian;Altendorf, Karlheinz;Sewald, Norbert. And the article was included in Chemistry & Biodiversity in 2007.Recommanded Product: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

A series of analogs of efrapeptin C, with variations in the central tripeptide epitope Leu-β-Ala-Gly (positions 6-8), were prepared by a combination of solid- and solution-phase peptide syntheses. The conformations of the modified compounds (Xaa6-Xaa7-Xaa8 = Leu-Gly-βAla, β-Ala-Leu-Gly, β3HLeu-Gly-Gly, Leu-β3-HPhe-Gly, Leu-Aib-Gly) were investigated by circular-dichroism (CD) spectroscopy to differentiate between 310– and α-helical secondary structures. The inhibitory activities of the new compounds towards F1-ATPase from E. coli were determined Threee modified congeners were less active by one order of magnitude compared to efrapeptin C (Ki 10 μM), and one was completely inactive. Our experiments demonstrate that the flexible, central tripeptide epitope, comprising positions 6-8 in efrapeptin C, is crucial for mol. recognition, even slight sequence modifications being hardly tolerated. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Recommanded Product: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Recommanded Product: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Jost, Micha et al. published their research in Chemistry & Biodiversity in 2007 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Recommanded Product: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Synthesis and structural and biological studies of efrapeptin C analogues was written by Jost, Micha;Weigelt, Sven;Huber, Thomas;Majer, Zsuzsanna;Greie, Joerg-Christian;Altendorf, Karlheinz;Sewald, Norbert. And the article was included in Chemistry & Biodiversity in 2007.Recommanded Product: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

A series of analogs of efrapeptin C, with variations in the central tripeptide epitope Leu-β-Ala-Gly (positions 6-8), were prepared by a combination of solid- and solution-phase peptide syntheses. The conformations of the modified compounds (Xaa6-Xaa7-Xaa8 = Leu-Gly-βAla, β-Ala-Leu-Gly, β3HLeu-Gly-Gly, Leu-β3-HPhe-Gly, Leu-Aib-Gly) were investigated by circular-dichroism (CD) spectroscopy to differentiate between 310– and α-helical secondary structures. The inhibitory activities of the new compounds towards F1-ATPase from E. coli were determined Threee modified congeners were less active by one order of magnitude compared to efrapeptin C (Ki 10 μM), and one was completely inactive. Our experiments demonstrate that the flexible, central tripeptide epitope, comprising positions 6-8 in efrapeptin C, is crucial for mol. recognition, even slight sequence modifications being hardly tolerated. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Recommanded Product: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Recommanded Product: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Crosignani, Stefano et al. published their research in Journal of Medicinal Chemistry in 2011 | CAS: 850429-73-1

1-((3-Bromo-4-methylphenyl)sulfonyl)piperidine (cas: 850429-73-1) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Safety of 1-((3-Bromo-4-methylphenyl)sulfonyl)piperidine

Discovery of Potent, Selective, and Orally Bioavailable Alkynylphenoxyacetic Acid CRTH2 (DP2) Receptor Antagonists for the Treatment of Allergic Inflammatory Diseases was written by Crosignani, Stefano;Pretre, Adeline;Jorand-Lebrun, Catherine;Fraboulet, Gaele;Seenisamy, Jeyaprakashnarayanan;Augustine, John Kallikat;Missotten, Marc;Humbert, Yves;Cleva, Christophe;Abla, Nada;Daff, Hamina;Schott, Olivier;Schneider, Manfred;Burgat-Charvillon, Fabienne;Rivron, Delphine;Hamernig, Ingrid;Arrighi, Jean-Francois;Gaudet, Marilene;Zimmerli, Simone C.;Juillard, Pierre;Johnson, Zoe. And the article was included in Journal of Medicinal Chemistry in 2011.Safety of 1-((3-Bromo-4-methylphenyl)sulfonyl)piperidine The following contents are mentioned in the article:

New phenoxyacetic acid antagonists of CRTH2 are described. Following the discovery of a hit compound, I, by a focused screening, high protein binding was identified as its main weakness. Optimization aimed at reducing serum protein binding led to the identification of several compounds that showed not only excellent affinities for the receptor (41 compounds with Ki < 10 nM) but also excellent potencies in a human whole blood assay (IC50 < 100 nM; PGD2-induced eosinophil shape change). Addnl. optimization of the pharmacokinetic characteristics led to the identification of several compounds suitable for in vivo testing. Of these, II (R1 = n-Pr, R2 = Me; R1 = n-Pr, R2 = F) were tested in two different pharmacol. models (acute FITC-mediated contact hypersensitivity and ovalbumin-induced eosinophilia models) and found to be active after oral dosing (10 and 30 mg/kg). This study involved multiple reactions and reactants, such as 1-((3-Bromo-4-methylphenyl)sulfonyl)piperidine (cas: 850429-73-1Safety of 1-((3-Bromo-4-methylphenyl)sulfonyl)piperidine).

1-((3-Bromo-4-methylphenyl)sulfonyl)piperidine (cas: 850429-73-1) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Safety of 1-((3-Bromo-4-methylphenyl)sulfonyl)piperidine

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Crosignani, Stefano et al. published their research in Journal of Medicinal Chemistry in 2011 | CAS: 850429-73-1

1-((3-Bromo-4-methylphenyl)sulfonyl)piperidine (cas: 850429-73-1) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Recommanded Product: 850429-73-1

Discovery of Potent, Selective, and Orally Bioavailable Alkynylphenoxyacetic Acid CRTH2 (DP2) Receptor Antagonists for the Treatment of Allergic Inflammatory Diseases was written by Crosignani, Stefano;Pretre, Adeline;Jorand-Lebrun, Catherine;Fraboulet, Gaele;Seenisamy, Jeyaprakashnarayanan;Augustine, John Kallikat;Missotten, Marc;Humbert, Yves;Cleva, Christophe;Abla, Nada;Daff, Hamina;Schott, Olivier;Schneider, Manfred;Burgat-Charvillon, Fabienne;Rivron, Delphine;Hamernig, Ingrid;Arrighi, Jean-Francois;Gaudet, Marilene;Zimmerli, Simone C.;Juillard, Pierre;Johnson, Zoe. And the article was included in Journal of Medicinal Chemistry in 2011.Recommanded Product: 850429-73-1 The following contents are mentioned in the article:

New phenoxyacetic acid antagonists of CRTH2 are described. Following the discovery of a hit compound, I, by a focused screening, high protein binding was identified as its main weakness. Optimization aimed at reducing serum protein binding led to the identification of several compounds that showed not only excellent affinities for the receptor (41 compounds with Ki < 10 nM) but also excellent potencies in a human whole blood assay (IC50 < 100 nM; PGD2-induced eosinophil shape change). Addnl. optimization of the pharmacokinetic characteristics led to the identification of several compounds suitable for in vivo testing. Of these, II (R1 = n-Pr, R2 = Me; R1 = n-Pr, R2 = F) were tested in two different pharmacol. models (acute FITC-mediated contact hypersensitivity and ovalbumin-induced eosinophilia models) and found to be active after oral dosing (10 and 30 mg/kg). This study involved multiple reactions and reactants, such as 1-((3-Bromo-4-methylphenyl)sulfonyl)piperidine (cas: 850429-73-1Recommanded Product: 850429-73-1).

1-((3-Bromo-4-methylphenyl)sulfonyl)piperidine (cas: 850429-73-1) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Recommanded Product: 850429-73-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Hu, Xiafei et al. published their research in Organic Letters in 2021 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Quality Control of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Construction of peptide macrocycles via radical-mediated intramolecular C-H alkylations was written by Hu, Xiafei;Chen, Xiangxiang;Li, Bo;He, Gang;Chen, Gong. And the article was included in Organic Letters in 2021.Quality Control of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

Enzyme-catalyzed radical-mediated C-H functionalization reactions allow nature to create natural products of unusual three-dimensional structures from simple linear peptide precursors. In comparison, chemist’s ability to harness radical C-H functionalization reactions for synthesis of complex peptides remains limited. In this work, new methods have been developed to construct peptide macrocycles via radical-mediated intramol. C-H alkylation reactions under photoredox catalysis. Linear peptide precursors equipped with a C-terminal N-(acyloxy)phthalimide ester can cyclize with the α C-H bond of N-terminal glycine or aryl C-H bond of N-heteroarene capping units in high yield and selectivity under mild conditions. The strategy uses the C-H cyclization step to incorporate lysine, homolysine, and various heteroarene-derived amino acid linchpins into peptide macrocycles, enabling convergent and flexible synthesis of complex peptide macrocycles from simple building blocks. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Quality Control of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Quality Control of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Hu, Xiafei et al. published their research in Organic Letters in 2021 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Construction of peptide macrocycles via radical-mediated intramolecular C-H alkylations was written by Hu, Xiafei;Chen, Xiangxiang;Li, Bo;He, Gang;Chen, Gong. And the article was included in Organic Letters in 2021.Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

Enzyme-catalyzed radical-mediated C-H functionalization reactions allow nature to create natural products of unusual three-dimensional structures from simple linear peptide precursors. In comparison, chemist’s ability to harness radical C-H functionalization reactions for synthesis of complex peptides remains limited. In this work, new methods have been developed to construct peptide macrocycles via radical-mediated intramol. C-H alkylation reactions under photoredox catalysis. Linear peptide precursors equipped with a C-terminal N-(acyloxy)phthalimide ester can cyclize with the α C-H bond of N-terminal glycine or aryl C-H bond of N-heteroarene capping units in high yield and selectivity under mild conditions. The strategy uses the C-H cyclization step to incorporate lysine, homolysine, and various heteroarene-derived amino acid linchpins into peptide macrocycles, enabling convergent and flexible synthesis of complex peptide macrocycles from simple building blocks. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem