Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Electric Literature of 5382-16-1.
Renk, Dana R.;Skraban, Marcel;Bier, Dirk;Schulze, Annette;Wabbals, Erika;Wedekind, Franziska;Neumaier, Felix;Neumaier, Bernd;Holschbach, Marcus research published 《 Design, synthesis and biological evaluation of Tozadenant analogues as adenosine A2A receptor ligands》, the research content is summarized as follows. With the aim to obtain potent adenosine A2A receptor (A2AR) ligands, a series of eighteen derivatives of 4-hydroxy-N-(4-methoxy-7-morpholin-4-yl-1,3-benzo[d]thiazol-2-yl)-4-methylpiperidine-1-carboxamide were designed and synthesized. The target compounds were obtained by a chem. building block principle that involved reaction of the appropriate aminobenzothiazole Ph carbamates with either com. available or readily synthesized functionalized piperidines. Ki values for human A2AR ranged from 2.4 to 38 nM, with more than 120-fold selectivity over A1 receptors for all evaluated compounds except 4-Fluoro-4-(hydroxymethyl)-N-(4-methoxy-7-morpholinobenzo[d]thiazol-2-yl)piperidine-1-carboxamide which had a Ki of 361 nM and 18-fold selectivity. The most potent fluorine-containing derivatives exhibited Ki values of 4.9 nM, 3.6 nM and 2.8 nM for the human A2AR. Interestingly, the corresponding values for rat A2AR were found to be four to five times higher. Their binding to A2AR was further confirmed by radiolabeling with 18F and in vitro autoradiog. in rat brain slices, which showed almost exclusive striatal binding and complete displacement by the A2AR antagonist ZM 241385. Authors conclude that these compounds represent potential candidates for the visualization of the A2A receptor and open pathways to novel therapeutic treatments of neurodegenerative disorders or cancer.
5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Electric Literature of 5382-16-1
Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem