Yu, Ming-cheng team published research on Acta Pharmacologica Sinica in 2021 | 5382-16-1

SDS of cas: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. SDS of cas: 5382-16-1.

Yu, Ming-cheng;Yang, Feng;Ding, Xiao-yu;Sun, Nan-nan;Jiang, Zheng-yuan;Huang, Ya-fei;Yan, Yu-rong;Zhu, Chen;Xie, Qiong;Chen, Zhi-feng;Guo, Si-qi;Jiang, Hua-liang;Chen, Kai-xian;Luo, Cheng;Luo, Xiao-min;Chen, Shi-jie;Wang, Yong-hui research published 《 Crystallography-guided discovery of carbazole-based retinoic acid-related orphan receptor gamma-t (RORγt) modulators: insights into different protein behaviors with “short” and “long” inverse agonists》, the research content is summarized as follows. A series of 6-substituted carbazole-based retinoic acid-related orphan receptor gamma-t (RORγt) modulators were discovered through 6-position modification guided by insights from the crystallog. profiles of the “short” inverse agonist 6. With the increase in the size of the 6-position substituents, the “short” inverse agonist 6 first reversed its function to agonists and then to “long” inverse agonists. The cocrystal structures of RORγt complexed with the representative “short” inverse agonist 6 (PDB: 6LOB), the agonist 7d (PDB: 6LOA) and the “long” inverse agonist 7h (PDB: 6LO9) were revealed by X-ray anal. However, minor differences were found in the binding modes of “short” inverse agonist 6 and “long” inverse agonist 7h. To further reveal the mol. mechanisms of different RORγt inverse agonists, we performed mol. dynamics simulations and found that “short” or “long” inverse agonists led to different behaviors of helixes H11, H11′, and H12 of RORγt. The “short” inverse agonist 6 destabilizes H11′ and dislocates H12, while the “long” inverse agonist 7h separates H11 and unwinds H12. The results indicate that the two types of inverse agonists may behave differently in downstream signaling, which may help identify novel inverse agonists with different regulatory mechanisms.

SDS of cas: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yu, Haiyang team published research on Asian Journal of Organic Chemistry in 2021 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Synthetic Route of 84358-13-4

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Synthetic Route of 84358-13-4.

Yu, Haiyang;Zhao, Haoqiang;Xu, Xin;Zhang, Xin;Yu, Zexin;Li, Lingchao;Wang, Peng;Shi, Qian;Xu, Lijin research published 《 Rhodium(I)-Catalyzed C2-Selective Decarbonylative C-H Alkylation of Indoles with Alkyl Carboxylic Acids and Anhydrides》, the research content is summarized as follows. A Rh(I)-catalyzed chelation-assisted C2-selective C-H decarbonylative alkylation of indoles with readily available, cheap, safe and structurally diverse alkyl carboxylic acids or anhydrides has been developed. A wide variety of primary and secondary alkyl carboxylic acids and differently substituted indoles are compatible with this transformation, allowing facile synthesis of various C2-alkylated indoles with high efficiency and broad tolerance of diverse functional groups. The reaction proceeds in the absence of any external oxidant, and the presence of readily installable and removable N-pyrimidyl directing group is critical for catalysis. The process is convenient and scalable, and avoids the use of a dried solvent and an inert atm. Moreover, selective C7-alkylation and C2, C7-dialkylation have also been achieved by slightly modifying the reaction conditions.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Synthetic Route of 84358-13-4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yin, Xueqian team published research on Composites Science and Technology in 2021 | 2403-88-5

Application In Synthesis of 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Application In Synthesis of 2403-88-5.

Yin, Xueqian;Zhang, Jie;Xu, Jiazhuang;Tian, Meng;Li, Luying;Tan, Lin;Li, Zhongming research published 《 Fast-acting and highly rechargeable antibacterial composite nanofibrous membrane for protective applications》, the research content is summarized as follows. Bacterial infection has been globally recognized as one of the most prominent public health safety concerns, and the untreated surfaces are highly susceptible to the bacterial deposition and breeding without protective covers, thus the fabrication of potent membranes for shielding and combating bacteria is of vital importance. In this study, a powerful nanofibrous membrane on inactivating bacteria was fabricated based on a N-halamine polymeric system, which included a hydrophobic thermoplastic polyurethane (TPU) and a hydrophilic modified polyacrylic acid (PAA), and the fabricated membrane was called as TPM. According to the systematic investigations, TPM exhibited excellent antibacterial and antivirus activity, the min. inhibitory concentration to E. coli and S. aureus was 1.4 mg/mL. Upon contact, above 95% of both bacteria (≈106 CFU/mL) could be killed within 5 min, and the antiviral activity rate of TPM reached to above 99.92%. TPM also possessed a rapid chlorine loading capacity, which could completely load the active chlorine within 1 h, and the loading content of active chlorine rarely reduced even after five chlorination-quenching cycles, indicating excellent regenerative chlorination capacity. Addnl., the antibacterial mechanism in terms of macromol. release, morphol. damage and the reduction of respiratory chain dehydrogenase activity were studied. The resulting TPM with superior antibacterial performance can serve as a scalable biocidal layer for protective applications, and the facile synthesis of the TPM may also provide a strategy to develop protective materials in a sustainable, rechargeable, and structurally adaptive form.

Application In Synthesis of 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yin, Renli team published research on Chemical Engineering Journal (Amsterdam, Netherlands) in 2019 | 2403-88-5

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Quality Control of 2403-88-5

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Quality Control of 2403-88-5.

Yin, Renli;Guo, Wanqian;Wang, Huazhe;Du, Juanshan;Wu, Qinglian;Chang, Jo-Shu;Ren, Nanqi research published 《 Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism》, the research content is summarized as follows. In this study, sludge-derived biochar (SDBC) was prepared and applied in peroxydisulfate (PDS) activation for sulfamethoxazole (SMX) degradation Compared to the slight adsorption (16.5%) by SDBC alone and low direct oxidation (10.1%) by PDS alone, the SMX degradation rate was drastically increased to 94.6% in the combined SDBC/PDS system, suggesting that SDBC can successfully and efficiently activate PDS. The observed rate constant of the combined SDBC/PDS system was 48.3 times those of both PDS alone and SDBC alone processes. Material characterization and comparative experiments showed nitrogen doping and iron loading into the carbon layer might be the important active sites of the graphene-like SDBC material in PDS activation for SMX degradation More importantly, singlet oxygen (1O2), instead of traditional sulfate radicals or hydroxyl radicals, was the predominant reactive species of the SDBC/PDS system, which involved a new nonradical oxidation method for PDS activation by SDBC. The SMX degradation pathways by the nonradical 1O2 oxidation were first studied by combining d. functional theory (DFT) calculations with exptl. results. Different from the well-known pathways of SMX through the cleavage of the sulfanilamide bond by the attack of radicals, the 1O2 was likely to attack the aniline ring of SMX to initiate and accelerate the decomposition process. Finally, the energy cost anal. of the SDBC/PDS system further demonstrated the possible and economic application of the SDBC/PDS technique for SMX degradation Thus, this study proposed a novel and economic method for PDS activation through a new nonradical oxidation pathway predominated by 1O2, which also promoted the safe and efficient transformation of antibiotics or other contaminants by PDS activation processes.

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Quality Control of 2403-88-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yin, Huifen team published research on Environmental Science and Pollution Research in 2021 | 2403-88-5

Quality Control of 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Quality Control of 2403-88-5.

Yin, Huifen;Shi, Hanlu;Sun, Lei;Xia, Dongsheng;Yuan, Xiangjuan research published 《 Construction of Ag2O-modified g-C3N4 photocatalyst for rapid visible light degradation of ofloxacin》, the research content is summarized as follows. The design of stable and highly efficient photocatalysts had emerged as an economic and promising way for eliminating harmful pharmaceutical pollutants. In this study, a series of Ag2O-modified g-C3N4 composites with different Ag2O amounts (denoted as Ag2O-CNx) were fabricated via a facile reflux condensation methodol. Ofloxacin (OFL) was chosen as a model pollutant to evaluate the degradation efficiency of the photocatalytic system. The optimal photocatalytic activity was achieved with Ag2O-CN1.0, which reached up to 99.1% removal of OFL after 15-min reaction and the pseudo-first-order constant was 0.469 min-1, approx. 42 times higher than that of g-C3N4. Considering the complexity of the actual environment, the important influential factors such as catalyst dosage, initial OFL concentration, solution pH, and natural organic matter on the OFL degradation were systematically investigated. Addnl., Ag2O-CN1.0 showed good stability and recyclability in multiple cycle experiments The feasible photodegradation mechanism of OFL was proposed with radical scavenger experiments, and the degradation products were determined Furthermore, the enhanced photocatalytic activity could be ascribed to not only the high photogenerated charge separation efficiency and the surface plasmon resonance effect of metallic Ag, but also the p-n heterojunction formed between Ag2O and g-C3N4. Therefore, Ag2O-CN1.0 was a treatment material possessing great application prospects for eliminating OFL in wastewater.

Quality Control of 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yen-Pon, Expedite team published research on Journal of the American Chemical Society in 2022 | 84358-13-4

Quality Control of 84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Quality Control of 84358-13-4.

Yen-Pon, Expedite;Li, Longbo;Levitre, Guillaume;Majhi, Jadab;McClain, Edward J.;Voight, Eric A.;Crane, Erika A.;Molander, Gary A. research published 《 On-DNA Hydroalkylation to Introduce Diverse Bicyclo[1.1.1]pentanes and Abundant Alkyls via Halogen Atom Transfer》, the research content is summarized as follows. A Giese addition to install highly functionalized bicyclo[1.1.1]pentanes (BCPs) using tricyclo[1.1.1.01,3]pentane (TCP) as a radical linchpin, as well as other diverse alkyl groups, on-DNA from the corresponding organohalides as non-stabilized radical precursors was reported. Telescoped procedures allow extension of the substrate pool by at least an order of magnitude to ubiquitous alcs. and carboxylic acids, allowing us to “upcycle” these abundant feedstocks to afford non-traditional libraries with different physicochem. properties for the small-mol. products (i.e., non-peptide libraries with acids). This approach is amenable to library production, as a DNA damage assessment revealed good PCR amplifiability and only 6% mutated sequences for a full-length DNA tag.

Quality Control of 84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yang, Yang team published research on European Journal of Medicinal Chemistry in 2021 | 5382-16-1

Category: piperidines, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Category: piperidines.

Yang, Yang;Wang, Ke;Chen, Hao;Feng, Zhiqiang research published 《 Design, synthesis, evaluation, and SAR of 4-phenylindoline derivatives, a novel class of small-molecule inhibitors of the programmed cell death-1/ programmed cell death-ligand 1 (PD-1/PD-L1) interaction》, the research content is summarized as follows. The blockade of the PD-1/PD-L1 immune checkpoint pathway with small mols. is an emerging immunotherapeutic approach. A novel series of 4-phenylindoline derivatives were synthesized, and their inhibitory activity against the PD-1/PD-L1 protein-protein interaction (PPI) was evaluated through a homogenous time-resolved fluorescence (HTRF) assay. Among them, I and II exhibited potent activity with IC50 values of 17 nM and 12 nM, resp. Furthermore, I showed the promising inhibitory activity against the PD-1/PD-L1 interaction with the EC50 value of 0.43μM in a co-culture model of PD-L1/TCR Activator-expressing CHO cells and PD-1-expressing Jurkat cells. Besides, the structure-activity relationships (SAR) of the novel synthesized 4-phenylindoline derivatives was concluded, and the binding mode of II with the PD-L1 dimer was analyzed by mol. simulation and docking, demonstrating that the N-atom in the side chain of indoline fragment could interact with the amino acid residue of the PD-L1 protein to lead to the potent inhibitory activity. This study provided a new insight for further drug design.

Category: piperidines, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yang, Ruixia team published research on Separation and Purification Technology in 2021 | 2403-88-5

Safety of 2,2,6,6-Tetramethyl-4-piperidinol, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Safety of 2,2,6,6-Tetramethyl-4-piperidinol.

Yang, Ruixia;Peng, Qiaohong;Yu, Bing;Shen, Youqing;Cong, Hailin research published 《 Yolk-shell Fe3O4@MOF-5 nanocomposites as a heterogeneous Fenton-like catalyst for organic dye removal》, the research content is summarized as follows. Yolk-shell Fe3O4@MOF-5 nanocomposites were synthesized by utilizing a simple solvothermal method. The physicochem. properties of the yolk-shell Fe3O4@MOF-5 nanocomposites were characterized by transmission electron microscopy (TEM), Fourier transform IR spectroscopy (FTIR), X-ray diffraction (XRD), XPS, Brunauer-Emmett-Teller (BET) and vibrating sample magnetometer (VSM) methods. The nanocomposites had a catalytic yolk, a hollow cavity and a porous shell. The nanocomposites had relatively high sp. surface area of 203 m2 g-1 and showed superparamagnetic property. The catalytic activities of the yolk-shell Fe3O4@MOF-5 nanocomposites were evaluated by using methylene blue dye as a model pollutant. It is demonstrated that the yolk-shell Fe3O4@MOF-5 nanocomposites as a heterogeneous Fenton-like catalyst exhibited excellent catalysis since the internal cavity provided a relatively stable micro-environment for the reaction of the active ·OH radicals and the pollutants on the basis of the confinement effect. Furthermore, the yolk-shell Fe3O4@MOF-5 nanocomposites could be lightly separated from the pollutant solution by an external magnetic field and maintained good catalytic activity after five recycles, indicating the good stability of the nanocomposites.

Safety of 2,2,6,6-Tetramethyl-4-piperidinol, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yang, Qian team published research on ACS Sustainable Chemistry & Engineering in 2021 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Related Products of 84358-13-4

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Related Products of 84358-13-4.

Yang, Qian;Pan, Guanglong;Wei, Jie;Wang, Wentao;Tang, Yurong;Cai, Yunfei research published 《 Remarkable Activity of Potassium-Modified Carbon Nitride for Heterogeneous Photocatalytic Decarboxylative Alkyl/Acyl Radical Addition and Reductive Dimerization of para-Quinone Methides》, the research content is summarized as follows. Heterogeneous photocatalysis has emerged as a green and sustainable technique in organic synthesis. Developing highly effective heterogeneous photocatalysts that outperformed classical ruthenium-/iridium-based homogeneous ones for the visible-light mediated organic transformations is actively pursued by chemists but remains challenging. Herein, a modified carbon nitride-based heterogeneous photocatalytic system for both decarboxylative addition and reductive dimerization of para-quinone methides has been developed. The potassium-intercalated carbon nitride (CN-K) facile prepared by the direct KCl-induced structure remodeling of bulk g-C3N4 exhibited remarkable catalytic activity. The catalyst loading can be decreased to 0.025-0.25 mg/mL, which is significantly lower than that in homogeneous photocatalysis. Studies on the structure characterizations and photoelec. properties of CN-K and g-C3N4 imply that the enhanced activity of CN-K was attributed to its K-intercalated poly(heptazine)-based structure and existed as small lamellar nanocrystallites, thus leading to enhanced optical absorption, improved electron-hole separation, and easy dispersion in polar solvents. The heterogeneous nature and mild reaction conditions of this protocol allow for good catalyst recyclability, broad substrate scope, scale-up in a continuous flow, and applications to the valued target synthesis.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Related Products of 84358-13-4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yan, Guoyi team published research on Anti-Cancer Agents in Medicinal Chemistry in 2021 | 5382-16-1

Electric Literature of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Electric Literature of 5382-16-1.

Yan, Guoyi;Luo, Jiang;Han, Xuan;Zhang, Wenjuan;Pu, Chunlan;Zhou, Meng;Zhong, Xinxin;Hou, Xueyan;Hou, Man Zhou;Li, Rui research published 《 Design, Synthesis and Biological Evaluation of 4, 6-Coumarin Derivatives as Anti- Cancer and Apoptosis-Inducing Agents》, the research content is summarized as follows. Coumarin structures were widely employed in anti-cancer drug design. Herein we focused on the modifications of C4 and C6 positions on coumarin scaffold to get novel anti-cancer agents. The objective of the current work was the synthesis and biol. evaluation of a series of 4, 6-coumarin derivatives to get novel anticancer agents. Thirty-seven coumarin derivatives were designed and synthesized, the antiproliferative activity of the compounds was evaluated against human cancer cell lines and non-cancerous cells by MTT assay. The bioactivities and underlying mechanisms of active mols. were studied and the ADMET characters were predicted. Among the compounds, 4-p-hydroxy phenol-6-pinacol borane coumarin (25) exhibited a promising anti-cancer activity to cancer cell lines in a dose-dependent manner and the toxicity to normal cells was low. The mechanism of action was observed by inducing G2/M phase arrest and apoptosis which was further confirmed via western blot. In silico ADMET prediction revealed that compound 25 is a drug-like small mol. with a favorable safety profile. The findings in this work may give vital information for further development of 6-pinacol borane coumarin derivatives as novel anti-cancer agents.

Electric Literature of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem