Design, synthesis and biological evaluation of pyridine derivatives as selective SHP2 inhibitors was written by Liu, Wen-Shan;Yang, Bing;Wang, Rui-Rui;Li, Wei-Ya;Ma, Yang-Chun;Zhou, Liang;Du, Shan;Ma, Ying;Wang, Run-Ling. And the article was included in Bioorganic Chemistry in 2020.Reference of 144222-22-0 This article mentions the following:
SHP2 is a non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene, which affects the transduction of multiple signaling pathways, including RAS-ERK, PI3K-AKT and JAK-STAT. SHP2 also plays an important role in the programmed cell death pathway (PD-1/PD-L1). Studies have shown that SHP2 is associated with a variety of cancers, including breast, liver and gastric cancers. Therefore, the development of SHP2 inhibitors has attracted extensive attention. In this study, based on the known inhibitor 1 (SHP099), novel SHP2 inhibitors were designed by means of scaffold hopping, and 35 pyridine derivatives as SHP2 inhibitors were found. The in vitro enzyme activity assay was performed on these compounds, and multiple selective SHP2 inhibitors with activity potency similar to that of SHP099 were obtained. Among them, compound (2-(4-(aminomethyl)piperidin-1-yl)-5-(2,3-dichlorophenyl)pyridin-3-yl)methanol (11a) was the most potent and highly selective SHP2 inhibitor with an in vitro enzyme activity IC50 value of 1.36 μM. Fluorescence titration assay verified that 11a bound directly to SHP2 protein. Subsequently, cell assay of representative compounds showed that these compounds could effectively inhibit the proliferation of Ba/F3 cells. In addition, the pharmacokinetic characteristics of the designed compounds were analyzed by the in silico ADMET prediction. Mol. docking study provided more detailed information on the binding mode of compounds and SHP2 protein. In brief, this study reported for the first time that pyridine derivatives as novel SHP2 inhibitors had good inhibitory activity and selectivity, providing new clues for the development of small mol. SHP2 inhibitors. In the experiment, the researchers used many compounds, for example, 1-Boc-4-(Aminomethyl)piperidine (cas: 144222-22-0Reference of 144222-22-0).
1-Boc-4-(Aminomethyl)piperidine (cas: 144222-22-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Reference of 144222-22-0
Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem