Karki, Santosh et al. published their research in Rapid Communications in Mass Spectrometry in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Safety of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Development of a robotics platform for automated multi-ionization mass spectrometry was written by Karki, Santosh;Meher, Anil K.;Inutan, Ellen D.;Pophristic, Milan;Marshall, Darrell D.;Rackers, Kevin;Trimpin, Sarah;McEwen, Charles N.. And the article was included in Rapid Communications in Mass Spectrometry in 2021.Safety of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

Successful coupling of a multi-ionization automated platform with com. available mass spectrometers provides improved coverage of compounds in complex mixtures through implementation of new and traditional ionization methods. The versatility of the automated platform is demonstrated through coupling with mass spectrometers from two different vendors. Standards and complex biol. samples were acquired using electrospray ionization (ESI), solvent-assisted ionization (SAI) and matrix-assisted ionization (MAI). The MS® prototype automated platform samples from 96- or 384-well plates as well as surfaces. The platform interfaces with Thermo Fisher Scientific mass spectrometers by replacement of the IonMax source, and on Waters mass spectrometers with addnl. minor source inlet modifications. The sample is transferred to the ionization region using a fused-silica or metal capillary which is cleaned between acquisitions using solvents. For ESI and SAI, typically 1μL of sample solution is drawn into the capillary tube and for ESI slowly dispensed near the inlet of the mass spectrometer with voltage placed on the delivering syringe barrel to which the tubing is attached, while for SAI the sample delivery tubing inserts into the inlet without the need for high voltage. For MAI, typically, 0.2μL of matrix solution is drawn into the syringe before drawing 0.1μL of the sample solution and dispensing to dry before insertion into the inlet. A comparison study of a mixture of angiotensin I, verapamil, crystal violet, and atrazine representative of peptides, drugs, dyes, and herbicides using SAI, MAI, and ESI shows large differences in ionization efficiency of the various components. Solutions of a mixture of erythromycin and azithromycin in wells of a 384-microtiter well plate were mass analyzed at the rate of ∼1 min per sample using MAI and ESI. The authors report the anal. of bacterial extracts using automated MAI and ESI methods. Finally, the ability to perform surface anal. with the automated platform is also demonstrated by directly analyzing dyes separated on a thin-layer chromatog. (TLC) plate and compounds extracted from the surface of a beef liver tissue section. The prototype multi-ionization automated platform offers solid matrix introduction used with MAI, as well as solution introduction using either ESI or SAI. The combination of ionization methods extends the types of compounds which are efficiently ionized and is especially valuable with complex mixtures as demonstrated for bacterial extracts While coupling of the automated multi-ionization platform to Thermo and Waters mass spectrometers is demonstrated, it should be possible to interface it with most com. mass spectrometers. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Safety of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Safety of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem