Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 175136-62-6, is researched, SMILESS is FC(C1=CC(C(F)(F)F)=CC(P(C2=CC(C(F)(F)F)=CC(C(F)(F)F)=C2)C3=CC(C(F)(F)F)=CC(C(F)(F)F)=C3)=C1)(F)F, Molecular C24H9F18PJournal, Article, Research Support, Non-U.S. Gov’t, Nature Chemistry called Manganese-catalysed divergent silylation of alkenes, Author is Dong, Jie; Yuan, Xiang-Ai; Yan, Zhongfei; Mu, Liying; Ma, Junyang; Zhu, Chengjian; Xie, Jin, the main research direction is diphosphinoamino diphosphinomethyl manganese carbonyl complex preparation catalyst silylation; crystal structure diphosphinoamino diphosphinomethyl manganese carbonyl complex; mol structure diphosphinoamino diphosphinomethyl manganese carbonyl complex; alkene silylation manganese catalyst; potential energy surface alkene silylation manganese catalyst DFT.Synthetic Route of C24H9F18P.
Transition-metal-catalyzed, redox-neutral dehydrosilylation of alkenes is a long-standing challenge in organic synthesis, with current methods suffering from low selectivity and narrow scope. The authors report a general and simple method for the Mn-catalyzed dehydrosilylation and hydrosilylation of alkenes, with Mn2(CO)10 as a catalyst precursor, by using a ligand-tuned metalloradical reactivity strategy. This enables versatility and controllable selectivity with a 1:1 ratio of alkenes and silanes, and the synthetic robustness and practicality of this method are demonstrated using complex alkenes and light olefins. The selectivity of the reaction was studied using d. functional theory calculations, showing the use of an iPrPNP ligand to favor dehydrosilylation, while a JackiePhos ligand favors hydrosilylation. The reaction is redox-neutral and atom-economical, exhibits a broad substrate scope and excellent functional group tolerance, and is suitable for various synthetic applications on a gram scale. [graphic not available: see fulltext].
If you want to learn more about this compound(Tris(3,5-bis(trifluoromethyl)phenyl)phosphine)Synthetic Route of C24H9F18P, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(175136-62-6).
Reference:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem