Maier, Norbert M. et al. published their research in Acta Chimica Slovenica in 2012 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Application of 86069-86-5

Chromatographic enantiomer separation using 9-amino-9-(deoxy)-epiquinine-derived chiral selectors: control of chiral recognition via introduction of additional stereogenic centers was written by Maier, Norbert M.;Greco, Elisa;Petrovaj, Jan;Lindner, Wolfgang. And the article was included in Acta Chimica Slovenica in 2012.Application of 86069-86-5 The following contents are mentioned in the article:

Three new cinchona-type chiral selectors were prepared by attaching N-pivaloyl-glycine, N-pivaloyl-(S)-valine and N-pivaloyl-(R)-valine segments to the C9-amino function of 9-amino-9-(deoxy)-epiquinine (eAQN), and immobilized to silica to provide the corresponding chiral stationary phases (CSPs). Evaluation of the chromatog. enantioseparation characteristics of these CSPs with a broad assortment of N-carbamoyl protected amino acids under polar organic mobile phase conditions revealed modest chiral recognition capabilities for N-Fmoc-, N-Cbz- and N-Boc-derivatives The enantioselective analyte binding to these CSPs is strictly controlled by the absolute stereochem. of the amino acid functionalities attached to the C9-amino group of the eAQN framework. Specifically, the CSP derived from (S)-valine-based selector exhibits preferential binding of N-carbamoyl-(S)-amino acids, while the CSPs featuring (R)-valine- and the glycine-derived selectors show opposite enantioselective binding preference. The observed impact of analyte structure on enantioselectivity and the specific preferences in enantioselective binding point to chiral recognition mechanisms capitalizing on intermol. ion pairing, hydrogen bonding and subtle steric interactions, with the latter making the crucial contributions to stereodiscrimination. The finding that the chiral recognition characteristics of epiquinine can be readily controlled via incorporation of addnl. stereogenic centers remote from the cinchona scaffold might be useful information for the design of new enantioselective receptors and organocatalysts. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Application of 86069-86-5).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Application of 86069-86-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Maier, Norbert M. et al. published their research in Acta Chimica Slovenica in 2012 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Category: piperidines

Chromatographic enantiomer separation using 9-amino-9-(deoxy)-epiquinine-derived chiral selectors: control of chiral recognition via introduction of additional stereogenic centers was written by Maier, Norbert M.;Greco, Elisa;Petrovaj, Jan;Lindner, Wolfgang. And the article was included in Acta Chimica Slovenica in 2012.Category: piperidines The following contents are mentioned in the article:

Three new cinchona-type chiral selectors were prepared by attaching N-pivaloyl-glycine, N-pivaloyl-(S)-valine and N-pivaloyl-(R)-valine segments to the C9-amino function of 9-amino-9-(deoxy)-epiquinine (eAQN), and immobilized to silica to provide the corresponding chiral stationary phases (CSPs). Evaluation of the chromatog. enantioseparation characteristics of these CSPs with a broad assortment of N-carbamoyl protected amino acids under polar organic mobile phase conditions revealed modest chiral recognition capabilities for N-Fmoc-, N-Cbz- and N-Boc-derivatives The enantioselective analyte binding to these CSPs is strictly controlled by the absolute stereochem. of the amino acid functionalities attached to the C9-amino group of the eAQN framework. Specifically, the CSP derived from (S)-valine-based selector exhibits preferential binding of N-carbamoyl-(S)-amino acids, while the CSPs featuring (R)-valine- and the glycine-derived selectors show opposite enantioselective binding preference. The observed impact of analyte structure on enantioselectivity and the specific preferences in enantioselective binding point to chiral recognition mechanisms capitalizing on intermol. ion pairing, hydrogen bonding and subtle steric interactions, with the latter making the crucial contributions to stereodiscrimination. The finding that the chiral recognition characteristics of epiquinine can be readily controlled via incorporation of addnl. stereogenic centers remote from the cinchona scaffold might be useful information for the design of new enantioselective receptors and organocatalysts. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Category: piperidines).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Category: piperidines

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Lee, Jiyoun et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2012 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Synthetic Route of C21H21NO4

Synthesis and evaluation of aza-peptidyl inhibitors of the lysosomal asparaginyl endopeptidase, legumain was written by Lee, Jiyoun;Bogyo, Matthew. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2012.Synthetic Route of C21H21NO4 The following contents are mentioned in the article:

Legumain or asparaginyl endopeptidase (AEP) is a lysosomal cysteine protease with a high level of specificity for cleavage of protein substrates after an asparagine residue. It is also capable of cleaving after aspartic acids sites when in the acidic environment of the lysosome. Legumain expression and activity is linked to a number of pathol. conditions including cancer, atherosclerosis and inflammation, yet its biol. role in these pathologies is not well-understood. Highly potent and selective inhibitors of legumain would not only be valuable for studying the functional roles of legumain in these conditions, but may have therapeutic potential as well. The authors describe here the design, synthesis and in vitro evaluation of selective legumain inhibitors based on the aza-asparaginyl scaffold. The authors synthesized a library of aza-peptidyl inhibitors with various non-natural amino acids and different electrophilic warheads, and characterized the kinetic properties of inactivation of legumain. The authors also synthesized fluorescently labeled inhibitors to investigate cell permeability and selectivity of the compounds The inhibitors have second order rate constants of up to 5 × 104 M-1 s-1 and IC50 values as low as 4 nM against recombinant mouse legumain. In addition, the inhibitors are highly selective toward legumain and have little or no cross-reactivity with cathepsins. Overall, the authors have identified several valuable new inhibitors of legumain that can be used to study legumain function in multiple disease models. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Synthetic Route of C21H21NO4).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Synthetic Route of C21H21NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Lee, Jiyoun et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2012 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Safety of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Synthesis and evaluation of aza-peptidyl inhibitors of the lysosomal asparaginyl endopeptidase, legumain was written by Lee, Jiyoun;Bogyo, Matthew. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2012.Safety of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

Legumain or asparaginyl endopeptidase (AEP) is a lysosomal cysteine protease with a high level of specificity for cleavage of protein substrates after an asparagine residue. It is also capable of cleaving after aspartic acids sites when in the acidic environment of the lysosome. Legumain expression and activity is linked to a number of pathol. conditions including cancer, atherosclerosis and inflammation, yet its biol. role in these pathologies is not well-understood. Highly potent and selective inhibitors of legumain would not only be valuable for studying the functional roles of legumain in these conditions, but may have therapeutic potential as well. The authors describe here the design, synthesis and in vitro evaluation of selective legumain inhibitors based on the aza-asparaginyl scaffold. The authors synthesized a library of aza-peptidyl inhibitors with various non-natural amino acids and different electrophilic warheads, and characterized the kinetic properties of inactivation of legumain. The authors also synthesized fluorescently labeled inhibitors to investigate cell permeability and selectivity of the compounds The inhibitors have second order rate constants of up to 5 × 104 M-1 s-1 and IC50 values as low as 4 nM against recombinant mouse legumain. In addition, the inhibitors are highly selective toward legumain and have little or no cross-reactivity with cathepsins. Overall, the authors have identified several valuable new inhibitors of legumain that can be used to study legumain function in multiple disease models. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Safety of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Safety of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Liu, Tao et al. published their research in ACS Combinatorial Science in 2011 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Electric Literature of C21H21NO4

High-Throughput Screening of One-Bead-One-Compound Libraries: Identification of Cyclic Peptidyl Inhibitors against Calcineurin/NFAT Interaction was written by Liu, Tao;Qian, Ziqing;Xiao, Qing;Pei, Dehua. And the article was included in ACS Combinatorial Science in 2011.Electric Literature of C21H21NO4 The following contents are mentioned in the article:

One-bead-one-compound (OBOC) libraries provide a powerful tool for drug discovery as well as biomedical research. However, screening a large number of beads/compounds (>1 million) and rank ordering the initial hits (which are covalently attached to a solid support) according to their potencies still pose significant tech. challenges. In this work, we have integrated some of the latest tech. advances from our own as well as other laboratories to develop a general methodol. for rapidly screening large OBOC libraries. The methodol. has been applied to synthesize and screen a cyclic peptide library that features: (1) spatially segregated beads containing cyclic peptides on the surface layer and linear encoding peptides in their interior; (2) rapid on-bead screening of the library (>1 million) by a multistage procedure (magnetic bead sorting, enzyme-linked assay, and fluorescence based screening); (3) selective release of cyclic peptides from single pos. beads for solution-phase determination of their binding affinities; and (4) hit identification by partial Edman degradation/mass spectrometry (PED/MS). Screening of the library against protein phosphatase calcineurin (Cn) identified a series of cyclic peptides that bind to the substrate-docking site for nuclear factor of activated T cells (NFAT) with KD values of ∼1 μM. Further improvement of the affinity and specificity of these compounds may lead to a new class of immunosuppressive agents that are more selective and therefore less toxic than cyclosporine A and FK506. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Electric Literature of C21H21NO4).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Electric Literature of C21H21NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Liu, Tao et al. published their research in ACS Combinatorial Science in 2011 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Synthetic Route of C21H21NO4

High-Throughput Screening of One-Bead-One-Compound Libraries: Identification of Cyclic Peptidyl Inhibitors against Calcineurin/NFAT Interaction was written by Liu, Tao;Qian, Ziqing;Xiao, Qing;Pei, Dehua. And the article was included in ACS Combinatorial Science in 2011.Synthetic Route of C21H21NO4 The following contents are mentioned in the article:

One-bead-one-compound (OBOC) libraries provide a powerful tool for drug discovery as well as biomedical research. However, screening a large number of beads/compounds (>1 million) and rank ordering the initial hits (which are covalently attached to a solid support) according to their potencies still pose significant tech. challenges. In this work, we have integrated some of the latest tech. advances from our own as well as other laboratories to develop a general methodol. for rapidly screening large OBOC libraries. The methodol. has been applied to synthesize and screen a cyclic peptide library that features: (1) spatially segregated beads containing cyclic peptides on the surface layer and linear encoding peptides in their interior; (2) rapid on-bead screening of the library (>1 million) by a multistage procedure (magnetic bead sorting, enzyme-linked assay, and fluorescence based screening); (3) selective release of cyclic peptides from single pos. beads for solution-phase determination of their binding affinities; and (4) hit identification by partial Edman degradation/mass spectrometry (PED/MS). Screening of the library against protein phosphatase calcineurin (Cn) identified a series of cyclic peptides that bind to the substrate-docking site for nuclear factor of activated T cells (NFAT) with KD values of ∼1 μM. Further improvement of the affinity and specificity of these compounds may lead to a new class of immunosuppressive agents that are more selective and therefore less toxic than cyclosporine A and FK506. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Synthetic Route of C21H21NO4).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Synthetic Route of C21H21NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Perlow, Debra S. et al. published their research in Journal of Organic Chemistry in 1992 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.COA of Formula: C21H21NO4

Use of N-Fmoc amino acid chlorides and activated 2-(fluorenylmethoxy)-5(4H)-oxazolones in solid-phase peptide synthesis. Efficient syntheses of highly N-alkylated cyclic hexapeptide oxytocin antagonists related to L-365,209 was written by Perlow, Debra S.;Erb, Jill M.;Gould, Norman P.;Tung, Roger D.;Freidinger, Roger M.;Williams, Peter D.;Veber, Daniel F.. And the article was included in Journal of Organic Chemistry in 1992.COA of Formula: C21H21NO4 The following contents are mentioned in the article:

9-Fluorenylmethoxycarbonyl (Fmoc) amino acid chlorides are useful reagents in the solid-phase synthesis of hexapeptides containing up to four sequential secondary amino acids. The oxytocin antagonist cyclo(D-Phe-Ile-D-Pip-Pip-D-MePhe-Pro) (I; Pip = pipecolic acid) was prepared in 70% overall yield starting from Boc-L-Pro-O-(PAM)-resin (Boc = tert-butoxycarbonyl). In the synthesis of I, the high reactivity of Fmoc-L-pipecolic acid chloride used in the di- to tripeptide step averted diketopiperazine formation seen with active ester couplings. The use of Fmoc-amino acid chlorides in the subsequent couplings provided a rapid method for assembly of the linear hexapeptide. The two potent cyclic hexapeptide oxytocin antagonists L-366,682 and L-366,948 were prepared in 45-48% overall yield on a 20 mmol scale using the methodol. developed for the synthesis of I. A particularly difficult coupling was encountered that involved acylation of a sterically hindered Nδ-Cbz-piperazic acid (Cbz = benzyloxycarbonyl) N-terminus with Fmoc-L-isoleucine. Excess Fmoc-L-isoleucine acid chloride in the presence of tertiary amine base gave only 30% conversion. The efficiency was improved to 76% by utilizing the acid chloride with AgCN in toluene. Further investigation revealed that this combination of reagents produces an activated form of the isoleucine 2-alkoxy-5(4H)-oxazolone derivative This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5COA of Formula: C21H21NO4).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.COA of Formula: C21H21NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Perlow, Debra S. et al. published their research in Journal of Organic Chemistry in 1992 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Synthetic Route of C21H21NO4

Use of N-Fmoc amino acid chlorides and activated 2-(fluorenylmethoxy)-5(4H)-oxazolones in solid-phase peptide synthesis. Efficient syntheses of highly N-alkylated cyclic hexapeptide oxytocin antagonists related to L-365,209 was written by Perlow, Debra S.;Erb, Jill M.;Gould, Norman P.;Tung, Roger D.;Freidinger, Roger M.;Williams, Peter D.;Veber, Daniel F.. And the article was included in Journal of Organic Chemistry in 1992.Synthetic Route of C21H21NO4 The following contents are mentioned in the article:

9-Fluorenylmethoxycarbonyl (Fmoc) amino acid chlorides are useful reagents in the solid-phase synthesis of hexapeptides containing up to four sequential secondary amino acids. The oxytocin antagonist cyclo(D-Phe-Ile-D-Pip-Pip-D-MePhe-Pro) (I; Pip = pipecolic acid) was prepared in 70% overall yield starting from Boc-L-Pro-O-(PAM)-resin (Boc = tert-butoxycarbonyl). In the synthesis of I, the high reactivity of Fmoc-L-pipecolic acid chloride used in the di- to tripeptide step averted diketopiperazine formation seen with active ester couplings. The use of Fmoc-amino acid chlorides in the subsequent couplings provided a rapid method for assembly of the linear hexapeptide. The two potent cyclic hexapeptide oxytocin antagonists L-366,682 and L-366,948 were prepared in 45-48% overall yield on a 20 mmol scale using the methodol. developed for the synthesis of I. A particularly difficult coupling was encountered that involved acylation of a sterically hindered Nδ-Cbz-piperazic acid (Cbz = benzyloxycarbonyl) N-terminus with Fmoc-L-isoleucine. Excess Fmoc-L-isoleucine acid chloride in the presence of tertiary amine base gave only 30% conversion. The efficiency was improved to 76% by utilizing the acid chloride with AgCN in toluene. Further investigation revealed that this combination of reagents produces an activated form of the isoleucine 2-alkoxy-5(4H)-oxazolone derivative This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Synthetic Route of C21H21NO4).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Synthetic Route of C21H21NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Raulfs, Mary Disa M. et al. published their research in Journal of the American Society for Mass Spectrometry in 2014 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Recommanded Product: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Investigations of the mechanism of the “Proline Effect” in Tandem Mass spectrometry experiments: The “Pipecolic Acid Effect” was written by Raulfs, Mary Disa M.;Breci, Linda;Bernier, Matthew;Hamdy, Omar M.;Janiga, Ashley;Wysocki, Vicki;Poutsma, John C.. And the article was included in Journal of the American Society for Mass Spectrometry in 2014.Recommanded Product: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

The fragmentation behavior of a set of model peptides containing proline, its four-membered ring analog azetidine-2-carboxylic acid (Aze), its six-membered ring analog pipecolic acid (Pip), an acyclic secondary amine residue N-methyl-alanine (NMeA), and the D stereoisomers of Pro and Pip has been determined using collision-induced dissociation in ESI-tandem mass spectrometers. Exptl. results for AAXAA, AVXLG, AAAXA, AGXGA, and AXPAA peptides are presented, where X represents Pro, Aze, Pip, or NMeA. Aze- and Pro-containing peptides fragment according to the well-established “proline effect” through selective cleavage of the amide bond N-terminal to the Aze/Pro residue to give yn+ ions. In contrast, Pip- and NMA-fragment through a different mechanism, the “pipecolic acid effect,” selectively at the amide bond C-terminal to the Pip/NMA residue to give bn+ ions. Calculations of the relative basicities of various sites in model peptide mols. containing Aze, Pro, Pip, or NMeA indicate that whereas the “proline effect’ can in part be rationalized by the increased basicity of the prolyl-amide site, the “pipecolic acid effect” cannot be justified through the basicity of the residue. Rather, the increased flexibility of the Pip and NMeA residues allow for conformations of the peptide for which transfer of the mobile proton to the amide site C-terminal to the Pip/NMeA becomes energetically favorable. This argument is supported by the differing results obtained for AAPAA vs. AA(D-Pro)AA, a result that can best be explained by steric effects. Fragmentation of pentapeptides containing both Pro and Pip indicate that the “pipecolic acid effect” is stronger than the “proline effect.”. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Recommanded Product: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Recommanded Product: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Raulfs, Mary Disa M. et al. published their research in Journal of the American Society for Mass Spectrometry in 2014 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Recommanded Product: 86069-86-5

Investigations of the mechanism of the “Proline Effect” in Tandem Mass spectrometry experiments: The “Pipecolic Acid Effect” was written by Raulfs, Mary Disa M.;Breci, Linda;Bernier, Matthew;Hamdy, Omar M.;Janiga, Ashley;Wysocki, Vicki;Poutsma, John C.. And the article was included in Journal of the American Society for Mass Spectrometry in 2014.Recommanded Product: 86069-86-5 The following contents are mentioned in the article:

The fragmentation behavior of a set of model peptides containing proline, its four-membered ring analog azetidine-2-carboxylic acid (Aze), its six-membered ring analog pipecolic acid (Pip), an acyclic secondary amine residue N-methyl-alanine (NMeA), and the D stereoisomers of Pro and Pip has been determined using collision-induced dissociation in ESI-tandem mass spectrometers. Exptl. results for AAXAA, AVXLG, AAAXA, AGXGA, and AXPAA peptides are presented, where X represents Pro, Aze, Pip, or NMeA. Aze- and Pro-containing peptides fragment according to the well-established “proline effect” through selective cleavage of the amide bond N-terminal to the Aze/Pro residue to give yn+ ions. In contrast, Pip- and NMA-fragment through a different mechanism, the “pipecolic acid effect,” selectively at the amide bond C-terminal to the Pip/NMA residue to give bn+ ions. Calculations of the relative basicities of various sites in model peptide mols. containing Aze, Pro, Pip, or NMeA indicate that whereas the “proline effect’ can in part be rationalized by the increased basicity of the prolyl-amide site, the “pipecolic acid effect” cannot be justified through the basicity of the residue. Rather, the increased flexibility of the Pip and NMeA residues allow for conformations of the peptide for which transfer of the mobile proton to the amide site C-terminal to the Pip/NMeA becomes energetically favorable. This argument is supported by the differing results obtained for AAPAA vs. AA(D-Pro)AA, a result that can best be explained by steric effects. Fragmentation of pentapeptides containing both Pro and Pip indicate that the “pipecolic acid effect” is stronger than the “proline effect.”. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Recommanded Product: 86069-86-5).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Recommanded Product: 86069-86-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem