Carnovale, Carla et al. published their research in World Allergy Organization Journal in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Safety of fexofenadine and other second-generation oral antihistamines before and after the removal of the prescription requirement in Italy and other European countries: A real-world evidence study and systematicreview was written by Carnovale, Carla;Battini, Vera;Gringeri, Michele;Volonte, Marina;Uboldi, Maria Chiara;Chiarenza, Andrea;Passalacqua, Giovanni. And the article was included in World Allergy Organization Journal in 2022.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

The change from prescription to over-the-counter (OTC) status of oral antihistamines may raise concerns about drug safety due to the possibility of misuse/abuse. In most European countries, oral antihistamines are available without prescription, whereas in Italy, only <10-tablet packs are available OTC. To evaluate the safety profile of fexofenadine after OTC switch in Italy in a real-world setting, and to compare its safety profile to that of other European countries where larger pack sizes are available. To compare the safety of fexofenadine, cetirizine, and loratadine in Italy. To examine safety/efficacy across Europe with a systematic review. This case-by-case anal. used the US Food and Drug Administration (FDA) adverse event reporting system (FAERS) to extract data of the adverse events (AEs) related to fexofenadine, loratadine and cetirizine in Italy Jan. 2010-June 2020. The year 2016 was taken as the index date (removal of prescription requirement) for evaluation of the reporting trend of AEs of fexofenadine in Italy and make a comparison pre/post-OTC switch. A comparison of AEs with other European countries where fexofenadine is sold OTC in large packs >20 tablets (Belgium, Portugal, Switzerland, Finland, Hungary) was made. The rate at which an AE related to oral antihistamines occurred was estimated by calculation of the reporting rate (number of cases/[defined daily dose/1000 inhabitants per day]) on the basis of IQVIA sales data using the Italian Institute of Statistics database. A systematic review of the literature was also performed. There were 3760 reports of AEs with a suspected association with fexofenadine; of these, eight were reported from Italy. There was a slightly increasing trend per yr, in line with a general reporting trend of other drugs. In European countries where fexofenadine is available, the impact of OTC switch on AE reporting activity was negligible: from 2016, the reporting rate increased slightly and then normalized at 3.01, an incidence value similar to that recorded before the OTC switch (3.7 in 2015). Of 22 studies included in the systematic review, 18 (82%) pos. evaluated the OTC use of oral antihistamines, confirming an acceptable safety/tolerability profile. There was no difference in number of AEs reported for fexofenadine pre/post-OTC switch, indicating a similar safety profile. Spontaneous reporting systems are a valuable source of real-world data and support the OTC provision of oral antihistamines in Europe and fexofenadine in Italy, in addition to supporting the use of larger pack sizes in Italy. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Stromberga, Zane et al. published their research in Scientific Reports in 2020 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Alterations in histamine responses between juvenile and adult urinary bladder urothelium, lamina propria and detrusor tissues was written by Stromberga, Zane;Chess-Williams, Russ;Moro, Christian. And the article was included in Scientific Reports in 2020.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

Inflammatory mediators may have a role in various lower urinary tract disorders. Histamine is known to induce significant increases in both the tension and frequency of spontaneous phasic contractions in both urothelium with lamina propria (U&LP) and detrusor muscle via the activation of H1 receptor in juvenile animal models. However, it is unclear whether age affects these contractile responses to histamine. This study assessed the histamine receptor subtypes mediating contraction in juvenile and adult porcine bladders and compared the urothelium with lamina propria and detrusor responses to histamine. Isolated tissue bath studies were conducted using strips of porcine U&LP and detrusor obtained from juvenile (6 mo) and adult (3 years) animals exposed to histamine receptor agonists and antagonists. Treatment with histamine (100μM) in U&LP of juvenile animals caused increases in baseline tension by 47.84 ± 6.52 mN/g (p < 0.001, n = 51) and by 50.76 ± 4.10 mN/g (p < 0.001, n = 55) in adult animals. Furthermore, the frequency of spontaneous phasic contractions was significantly enhanced in response to histamine in U&LP of both juvenile and adult tissues (p < 0.001 for both age groups). Treatment with an H2 agonist in U&LP of juvenile animals decreased baseline tension by 13.97 ± 3.45 mN/g (n = 12, p < 0.05), but had no effect in adult animals. Inhibition of H1 receptors resulted in significantly reduced contractile responses of U&LP and detrusor to histamine in both juvenile and adult animals (p < 0.05). Treatment with an H2 receptor antagonist significantly enhanced contractions in juvenile preparations (n = 10, p < 0.05) but had no effect in adult preparations (n = 8). In detrusor, treatment with histamine (100μM) in juvenile tissues showed a significantly higher increase in baseline tension of 19.10 ± 4.92 mN/g (n = 51) when compared to adult tissues exhibiting increases of 8.21 ± 0.89 mN/g (n = 56, p < 0.05). The increases in the baseline tension were significantly inhibited by the presence of H1 receptor antagonists in both juvenile and adult detrusor preparations Treatment with either the H2 receptor antagonist or agonist in detrusor had no effect on both juvenile and adult tissues. Therefore, the histamine receptor system may play an essential role in the maintenance of bladder function or in bladder dysfunction observed in some lower urinary tract disorders. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Rollason, Victoria et al. published their research in Drug Safety in 2020 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Electric Literature of C32H39NO4

Safety of the Geneva Cocktail, a Cytochrome P450 and P-Glycoprotein Phenotyping Cocktail, in Healthy Volunteers from Three Different Geographic Origins was written by Rollason, Victoria;Mouterde, Mederic;Daali, Youssef;Cizkova, Martina;Priehodova, Edita;Kulichova, Iva;Posova, Helena;Petanova, Jitka;Mulugeta, Anwar;Makonnen, Eyasu;Al-Habsi, Abir;Davidson, Robin;Al-Balushi, Khalid K.;Al-Thihli, Khalid;Cerna, Marie;Al-Yahyaee, Said;Cerny, Viktor;Yimer, Getnet;Poloni, Estella S.;Desmeules, Jules. And the article was included in Drug Safety in 2020.Electric Literature of C32H39NO4 The following contents are mentioned in the article:

Introduction and Objective: Cytochrome P 450 enzymes are the major drug-metabolizing enzymes in humans and the importance of drug transport proteins, in particular P-glycoprotein, in the variability of drug response has also been highlighted. Activity of cytochrome P 450 enzymes and P-glycoprotein can vary widely between individuals and genotyping and/or phenotyping can help assess their activity. Several phenotyping cocktails have been developed. The Geneva cocktail is composed of a specific probe for six different cytochrome P 450 enzymes and one for P-glycoprotein and was used in the context of a research aiming at exploring genotypes and phenotypes in distinct human populations (NCT02789527). The aim of the present study is to solely report the safety results of the Geneva cocktail in the healthy volunteers of these populations. Materials and Methods: The Geneva cocktail is composed of caffeine, bupropion, flurbiprofen, omeprazole, dextromethorphan, midazolam, and fexofenadine. The volunteers fasted and avoided drinking caffeine-containing beverages or food and grapefruit juice overnight before receiving the cocktail orally. They provided blood spots for the probes concentrations at 2, 3, and 6 h after ingestion and were asked about adverse events. Results: A total of 265 healthy adult volunteers were included from Ethiopia, Oman, and the Czech Republic. The mean plasma concentrations at the 2-h sampling time of each probe drug in the total sample were: 1663 ng/mL for caffeine, 8 ng/mL for bupropion, 789 ng/mL for flurbiprofen, 6 ng/mL for dextromethorphan, 2 ng/mL for midazolam, 35 ng/mL for fexofenadine, and 103 ng/mL for omeprazole. Four adverse events were observed representing an occurrence of 1.5%. All these events were categorized as mild to moderate, non-serious, and resolved spontaneously. A causal link with the cocktail cannot be excluded because of the temporal relationship but is at most evaluated as possible according to the World Health Organization-Uppsala Monitoring Center causal assessment system. Conclusions: In this research, healthy volunteers from three different human populations were phenotyped with the Geneva cocktail. Four adverse events were observed, confirming the safety of this cocktail that is given at lower than clin. relevant doses and therefore results in concentrations lower than those reported to cause adverse events. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Electric Literature of C32H39NO4).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Electric Literature of C32H39NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Kodesova, Radka et al. published their research in Science of the Total Environment in 2020 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

How microbial community composition, sorption and simultaneous application of six pharmaceuticals affect their dissipation in soils was written by Kodesova, Radka;Chronakova, Alica;Grabicova, Katerina;Kocarek, Martin;Schmidtova, Zuzana;Frkova, Zuzana;Vojs Stanova, Andrea;Nikodem, Antonin;Klement, Ales;Fer, Miroslav;Grabic, Roman. And the article was included in Science of the Total Environment in 2020.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

Pharmaceuticals may enter soils due to the application of treated wastewater or biosolids. Their leakage from soils towards the groundwater, and their uptake by plants is largely controlled by sorption and degradation of those compounds in soils. Standard laboratory batch degradation and sorption experiments were performed using soil samples obtained from the top horizons of seven different soil types and 6 pharmaceuticals (carbamazepine, irbesartan, fexofenadine, clindamycin and sulfamethoxazole), which were applied either as single-solute solutions or as mixtures (not for sorption). The highest dissipation half-lives were observed for citalopram (average DT50,S for a single compound of 152 ± 53.5 days) followed by carbamazepine (106.0 ± 17.5 days), irbesartan (24.4 ± 3.5 days), fexofenadine (23.5 ± 20.9 days), clindamycin (10.8 ± 4.2 days) and sulfamethoxazole (9.6 ± 2.0 days). The simultaneous application of all compounds increased the half-lives (DT50,M) of all compounds (particularly carbamazepine, citalopram, fexofenadine and irbesartan), which is likely explained by the neg. impact of antibiotics (sulfamethoxazole and clindamycin) on soil microbial community. However, this trend was not consistent in all soils. In several cases, the DT50,S values were even higher than the DT50,M values. Principal component analyses showed that while knowledge of basic soil properties determines grouping of soils according sorption behavior, knowledge of the microbial community structure could be used to group soils according to the dissipation behavior of tested compounds in these soils. The derived multiple linear regression models for estimating dissipation half-lives (DT50,S) for citalopram, clindamycin, fexofenadine, irbesartan and sulfamethoxazole always included at least one microbial factor (either amount of phosphorus in microbial biomass or microbial biomarkers derived from phospholipid fatty acids) that deceased half-lives (i.e., enhanced dissipations). Equations for citalopram, clindamycin, fexofenadine and sulfamethoxazole included the Freundlich sorption coefficient, which likely increased half-lives (i.e., prolonged dissipations). This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Kumar, Mukesh et al. published their research in Journal of Clinical and Diagnostic Research in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Recommanded Product: 83799-24-0

Appraisal of inter-rater agreement among assessment scales and retrospective analysis of validated reports of cutaneous adverse drug reactions at tertiary care hospital in eastern India was written by Kumar, Mukesh;Manjhi, Pramod Kumar;Singh, Shruti;Soni;Singh, Dheeraj Kumar;Deo, Sanmita. And the article was included in Journal of Clinical and Diagnostic Research in 2021.Recommanded Product: 83799-24-0 The following contents are mentioned in the article:

Cutaneous Adverse Drug Reactions (CADRs) share significantly to Adverse Drug Reactions (ADRs) comprising 10%-30% of all ADR reporting in India. Multi Drug Therapy for Leprosy (MDT-L) and antimicrobials contribute remarkably to the overall CADRs burden. To show distinctive pictures of CADRs profile and to assess inter-rater agreement of assessment scales among study populations. A retrospective anal. was done for 245 CADRs reported from March 2018 to March 2020. Cohen kappa statistics was applied for inter-rater agreement study for causality (WHO-UMC Scale and Naranjo′s Algorithm), severity (Hartwig and Siegel scale) and preventability assessment (Modified Schumock & Thornton scale). CADRs contribute 45.54% of total ADRs reported during study period. Male (60.41%) and age group 21-40 years (22.45%) were predominant sex and age group, resp. Multidrug therapy for leprosy (51.84%) was the most common offending agent and hyperpigmentation (20.82%), dryness (13.1%), and both (11%) were the most prevalent CADRs. Causality of WHO-UMC Scale was higher with ′Possible′ than ′Probable′. Whereas, ′Probable′ was maximally found with Naranjo′s Algorithm. Severity assessment showed maximum ′mild′ cases i.e., 66.53% (manual) and 69.8%% (app). Preventability assessment depicted mostly ′Definite′, 66.53% (manual) and 85.71% (app). Inter-rater agreement study showed ′Substantial agreement′ for WHO-UMC Scale (K = 0.678) and Naranjo′s algorithm (K = 0.820), when manual vs app ratings were compared. ′Almost perfect′ for severity assessment (K = 0.893) and ′Moderate′ for preventability assessment (K = 0.434) were noticed. ′Fair′ agreement was observed when manual (WHO-UMC scale) vs manual (Naranjo′s algorithm) were compared with K = 0.290 and also, in app (WHO-UMC scale) vs app (Naranjo′s algorithm) with K = 0.319. CADRs were most prevalent among ADRs which have a distinctive picture in eastern India. WHO- UMC scale and Naranjo′s algorithm concluded significant differences in causality with only ′fair′ agreement between them. Severity and preventability assessment done by manually little varied in their results with pharmvigill app and is still more reliable and popular. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Recommanded Product: 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Recommanded Product: 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Sverrild, Asger et al. published their research in Respiratory Research in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

The use of the mannitol test as an outcome measure in asthma intervention studies: a review and practical recommendations was written by Sverrild, Asger;Leadbetter, Joanna;Porsbjerg, Celeste. And the article was included in Respiratory Research in 2021.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

Meta-anal. of mannitol test is an indirect bronchial challenge test widely used in diagnosing asthma. Response to the mannitol test correlates with the level of eosinophilic and mast cell airway inflammation, and a pos. mannitol test is highly predictive of a response to anti-inflammatory treatment with inhaled corticosteroids. The response to mannitol is a physiol. biomarker that may, therefore, be used to assess the response to other anti-inflammatory treatments and may be of particular interest in early phase studies that require surrogate markers to predict a clin. response. The main objectives of this review were to assess the practical aspects of using mannitol as an endpoint in clin. trials and provide the clin. researcher and respiratory physician with recommendations when designing early clin. trials. The aim of this review was to summarise previous uses of the mannitol test as an outcome measure in clin. intervention studies. The PubMed database was searched using a combination of MeSH and keywords. Eligible studies included intervention or repeatability studies using the standard mannitol test, at multiple timepoints, reporting the use of PD15 as a measure, and published in English. Of the 193 papers identified, 12 studies met the inclusion criteria and data from these are discussed in detail. Data on the mode of action, correlation with airway inflammation, its diagnostic properties, and repeatability have been summarised, and suggestions for the reporting of test results provided. Worked examples of power calculations for dimensioning study populations are presented for different types of study designs. Finally, interpretation and reporting of the change in the response to the mannitol test are discussed. The mechanistic and practical features of the mannitol test make it a useful marker of disease, not only in clin. diagnoses, but also as an outcome measure in intervention trials. Measuring airway hyperresponsiveness to mannitol provides a novel and reproducible test for assessing efficacy in intervention trials, and importantly, utilizes a test that links directly to underlying drivers of disease. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yang, Chung-Chi et al. published their research in International Immunopharmacology in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Formula: C32H39NO4

Quercetin inhibits histamine-induced calcium influx in human keratinocyte via histamine H4 receptors was written by Yang, Chung-Chi;Hung, Yen-Ling;Li, Hsin-Ju;Lin, Ya-Fan;Wang, Su-Jane;Chang, Der-Chen;Pu, Chi-Ming;Hung, Chi-Feng. And the article was included in International Immunopharmacology in 2021.Formula: C32H39NO4 The following contents are mentioned in the article:

Histamine is released from mast cells when tissues are inflamed or stimulated by allergens. Activation of histamine receptors and calcium influx via TRPV1 could be related to histamine-induced itch and skin inflammation. Quercetin is known to have anti-inflammatory and anti-itching effects. This study aims to understand whether quercetin can directly affect histamine-induced calcium influx in human keratinocyte. In it, we investigated quercetin, which acts on histamine-induced intracellular free calcium ([Ca2+]i) elevation in human keratinocyte. Changes in [Ca2+]i were measured using spectrofluorometry and confocal Imaging. We detected the expression of IL-8 after treatment of quercetin using qRT-PCR and evaluated its anti-itching effect in BALB/c mice. We also performed a docking study to estimate the binding affinity of quercetin to H4 receptors. We found that quercetin pretreatment decreased histamine-induced [Ca2+]i elevation in a concentration-dependent manner. The inhibitory effect of quercetin on histamine-induced [Ca2+]i elevation was blocked by JNJ7777120, a selective H4 antagonist, as well as by U73122, a PLC inhibitor, and by GF109203X, a PKC inhibitor. We also found that H4 agonist (4-methylhistamine)-induced [Ca2+]i elevation could be inhibited by quercetin. Moreover, the selective TRPV1 blocker capsazepine significantly suppressed the quercetin-mediated inhibition of histamine-induced [Ca2+]i elevation, whereas the TRPV4 blocker GSK2193874 had no effect. Last, quercetin decreased histamine and H4 agonist-induced IL-8 expression in keratinocyte and inhibited the scratching behavior-induced compound 48/80 in BALB/c mice. The mol. docking study also showed that quercetin exhibited high binding affinities with H4 receptors (autodock scores for H4 = -8.7 kcal/mol). These data suggest that quercetin could decrease histamine 4 receptor-induced calcium influx through the TRPV1 channel and could provide a mol. mechanism of quercetin in anti-itching, anti-inflammatory, and unpleasant sensations. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Formula: C32H39NO4).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Formula: C32H39NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Eysseric, Emmanuel et al. published their research in Science of the Total Environment in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Identifying congeners and transformation products of organic contaminants within complex chemical mixtures in impacted surface waters with a top-down non-targeted screening workflow was written by Eysseric, Emmanuel;Gagnon, Christian;Segura, Pedro A.. And the article was included in Science of the Total Environment in 2022.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

Over 350,000 compounds are registered for production and use including a high number of congeners found in complex chem. mixtures (CCMs). With such a high number of chems. being released in the environment and degraded into transformation products (TPs), the challenge of identifying contaminants by non-targeted screening (NTS) is massive. “Bottom-up” studies, where compounds are subjected to conditions simulating environmental degradation to identify new TPs, are time consuming and cannot be relied upon to study the TPs of hundreds of thousands of compounds Therefore, the development of “top-down” workflows, where the structural elucidation of unknown compounds is carried directly on the sample, is of interest. In this study, a top-down NTS workflow was developed using mol. networking and clustering (MNC). A total of 438 compounds were identified including 176 congeners of consumer product additives and 106 TPs. Reference standards were used to confirm the identification of 53 contaminants among them lesser-known pharmaceuticals (aliskiren, sitagliptin) and consumer product additives (lauramidopropyl betaine, 2,2,4-trimethyl-1,2-dihydroquinoline). The MNC tools allowed to group similar TPs and congeners together. As such, several previously unknown TPs of pesticides (metolachlor) and pharmaceuticals (gliclazide, irbesartan) were identified as tentative candidates or probable structures. Moreover, some congeners that had no entry on global repositories (PubChem, ChemSpider) were identified as probable structures. The workflow worked efficiently with oligomers containing ethylene oxide moieties, and with TPs structurally related to their parent compounds The top-down approach shown in this study addresses several issues with the identification of congeners of industrial compounds from CCMs. Furthermore, it allows elucidating the structure of TPs directly from samples without relying on bottom-up studies under conditions discussed herein. The top-down workflow and the MNC tools show great potential for data mining and retrospective anal. of previous NTS studies. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Kim, Beom Hee et al. published their research in Pharmaceuticals in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Reference of 83799-24-0

Efficient matrix cleanup of soft-gel-type dietary supplements for rapid screening of 92 illegal adulterants using EMR-lipid dSPE and UHPLC-Q/TOF-MS was written by Kim, Beom Hee;Lee, Wonwoong;Kim, You Lee;Lee, Ji Hyun;Hong, Jongki. And the article was included in Pharmaceuticals in 2021.Reference of 83799-24-0 The following contents are mentioned in the article:

An efficient matrix cleanup method was developed for the rapid screening of 92 illegal adulterants (25 erectile dysfunction drugs, 15 steroids, seven anabolic steroids, 12 antihistamines, 12 nonsteroidal anti-inflammatory drugs (NSAIDs), four diuretics, and 17 weight-loss drugs) in soft-gel-type supplements by ultra-high performance liquid chromatog.-quadrupole/time of flight-mass spectrometry (UHPLC-Q/TOF-MS). As representative green chem. methods, three sample preparation methods (dispersive liquid-liquid microextraction (DLLME), “quick, easy, cheap, effective, rugged, and safe” dispersive solid-phase extraction (QuEChERS-dSPE), and enhanced matrix removal-lipid (EMR-Lipid) dSPE) were evaluated for matrix removal efficiency, recovery rate, and matrix effect. In this study, EMR-Lipid dSPE was shown to effectively remove complicated matrix contents in soft-gels, compared to DLLME and QuEChERS-dSPE. For the rapid screening of a wide range of adulterants, extracted common ion chromatogram (ECIC) and neutral loss scan (NLS) based on specific common MS/MS fragments were applied to randomly collected soft-gel-type dietary supplement samples using UHPLC-Q/TOF-MS. Both ECICs and NLSs enabled rapid and simple screening of multi-class adulterants and could be an alternative to the multiple reaction monitoring (MRM) method. The developed method was validated in terms of limit of detection (LOD), precision, accuracy, recovery, and matrix effects. The range of LODs was 0.1-16 ng/g. The overall precision values were within 0.09-14.65%. The accuracy ranged from 81.6% to 116.6%. The recoveries and matrix effects of 92 illegal adulterants ranged within 16.9-119.4% and 69.8-114.8%, resp. The established method was successfully applied to screen and identify 92 illegal adulterants in soft-gels. This method can be a promising tool for the high-throughput screening of various adulterants in dietary supplements and could be used as a more environmentally friendly routine anal. method for screening dietary supplements illegally adulterated with multi-class drug substances. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Reference of 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Reference of 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem