Yin, Feiying et al. published their research in Chemosphere in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Electric Literature of C32H39NO4

Analyzing the synergistic adverse effects of BPA and its substitute, BHPF, on ulcerative colitis through comparative metabolomics was written by Yin, Feiying;Huang, Xue;Lin, Xiao;Chan, Ting Fung;Lai, Keng Po;Li, Rong. And the article was included in Chemosphere in 2022.Electric Literature of C32H39NO4 The following contents are mentioned in the article:

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that causes long-term inflammation and ulcers in the colon and rectum. Approx. 3 million adults were diagnosed with IBD in the US in 2015, and its incidence rate is estimated to increase by 4-6 times in 2030. Industrial pollutants are largely responsible for this significant increase in UC cases. Several epidemiol. and animal studies have demonstrated the correlation between pollutants and gastrointestinal diseases, but detailed mol. mechanisms responsible for adverse effects of environmental pollutants on UC are still unknown. In the present study, we used a dextran sulfate sodium (DSS)-induced colitis mouse model, comparative metabolomics anal., and systematic bioinformatics anal. to delineate the synergistic adverse effects of bisphenol A (BPA) and its substitute fluorene-9-bisphenol (BHPF) on UC. Subsequently, a significant alteration in gut metabolites was observed by the BPA and BHPF treatments. Furthermore, the bioinformatics anal. indicated deregulation of sugar and fatty acid metabolisms in the DSS-induced colitis model by the BPA and BHPF treatments, resp. Addnl., both the treatments induced an inflammatory response in the model. Particularly, some DSS-deregulated metabolites, which play important roles in gut inflammation, were synergistically induced or reduced by the BPA and BHPF treatments. To the best knowledge of the authors, the synergistic adverse effects of the BPA and BHPF treatments on UC were demonstrated for the first time through gut metabolism alterations. Therefore, the present study provides novel insights in the role of environmental pollutants, such as BPA and BHPF, in UC development. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Electric Literature of C32H39NO4).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Electric Literature of C32H39NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Escobedo, Ericson et al. published their research in Water Research in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.COA of Formula: C32H39NO4

Activation of hydrogen peroxide, persulfate, and free chlorine by steel anode for treatment of municipal and livestock wastewater: Unravelling the role of oxidants speciation was written by Escobedo, Ericson;Oh, Jin-Ah;Cho, Kangwoo;Chang, Yoon-Seok. And the article was included in Water Research in 2022.COA of Formula: C32H39NO4 The following contents are mentioned in the article:

Despite the extensive application of electrochem. advanced oxidation processes (EAOPs) in wastewater treatment, the exact speciation of oxidants and their effects on pollutants removal efficiency, byproducts formation, and effluent toxicity are largely unknown. In this study, galvanostatic steel anodes were used to drive the electrochem. activation of hydrogen peroxide (EAHP), persulfate (EAP), and free chlorine (EAFC), for industrial-scale treatment of municipal and livestock wastewater with a focus on micropollutants and transformation products (MTPs) and effluent toxicity. Response surface methodol. determined the optimized conditions for each treatment towards total organic carbon ([TOC]0 = 180 mg/L) removal at pH 3.0: persulfate dose = 0.12 mmol/min, 26.5 mA/cm2; free chlorine dose = 0.29 mmol/min, 37.4 mA/cm2; H2O2 dose = 0.20 mmol/min, 45 mA/cm2. Probe-compound degradation revealed that HO, SO•-4 and FeIVO2+ species were simultaneously generated in EAP, whereas HO and FeIVO2+ were the principal oxidants in EAHP and EAFC, resp. Samples were analyzed via liquid and gas chromatog. in non-target screening (NTS) mode to monitor the generation or removal of MTPs and byproducts including compounds that have not been reported previously. The speciation of oxidants, shifted in presence of halide ions (Cl, Br) in real wastewater samples, significantly affected the mineralization efficiency and byproduct formation. The production of halogenated byproducts in EAFC and EAP substantially increased the effluent toxicity, whereas EAHP provided non-toxic effluent and the highest mineralization efficiency (75 – 80%) to be nominated as the best strategy. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0COA of Formula: C32H39NO4).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.COA of Formula: C32H39NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Pilch, Nicole A. et al. published their research in Pediatric Transplantation in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Important considerations for drugs, nutritional, and herbal supplements in pediatric solid organ transplant recipients was written by Pilch, Nicole A.;Sell, Megan L.;McGhee, William;Venkataramanan, Raman. And the article was included in Pediatric Transplantation in 2021.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

A review. Pediatric transplant recipients are on multiple prescription and non-prescription drugs. Many patients also use dietary, nutritional, and herbal supplements. This manuscript researched formulations of immunosuppressive drugs currently available and presents information on generic immunosuppressive drugs, commonly used non-prescription medications, dietary supplements, and herbal supplements. Immunosuppressive drugs are available in various formulations. Not all formulations are interchangeable. A number of FDA-approved generic formulations are available com. in the United States. Generally generic formulations produce similar blood concentration vs time profiles compared to brand name products in adults and are considered to be bioequivalent. NSAID should be avoided in transplant patients due to potential drug interactions and increased risk associated with NSAID use; and appropriate doses of acetaminophen should be used for treatment of pain. Over-the-counter medications, such as guaifenesin and dextromethorphan, antihistamine medications, including diphenhydramine, loratadine, cetirizine, and fexofenadine, can be safely used in pediatric solid organ transplant population. Many safe and effective over-the-counter options exist for stool softening and as laxative. Diarrhea can lead to an increase in calcineurin inhibitor levels. Food can alter the absorption of immunosuppressive drugs. Several herbal products can alter immune status of the patients or alter the blood concentration of immunosuppressive drugs or may produce renal or hepatic toxicities and should be avoided in pediatric transplant recipients. It is important to educate pediatric transplant recipients and their families about not only immunosuppressive drug therapy but also about non-prescription drugs, dietary, and herbal supplement use. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ronaldson, Patrick T. et al. published their research in Journal of Pharmacology and Experimental Therapeutics in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.COA of Formula: C32H39NO4

Transport properties of statins by organic anion transporting polypeptide 1A2 and regulation by transforming growth factor-β signaling in human endothelial cells was written by Ronaldson, Patrick T.;Brzica, Hrvoje;Abdullahi, Wazir;Reilly, Bianca G.;Davis, Thomas P.. And the article was included in Journal of Pharmacology and Experimental Therapeutics in 2021.COA of Formula: C32H39NO4 The following contents are mentioned in the article:

Our in vivo rodent studies have shown that organic anion transporting polypeptide (Oatp) 1a4 is critical for blood-to-brain transport of statins, drugs that are effective neuroprotectants. Addnl., transforming growth factor-β (TGF-β) signaling via the activin receptor-like kinase 1 (ALK1) receptor regulates Oatp1a4 functional expression. The human ortholog of Oatp1a4 is OATP1A2. Therefore, the translational significance of our work requires demonstration that OATP1A2 can transport statins and is regulated by TGF-β/ALK1 signaling. Cellular uptake and monolayer permeability of atorvastatin, pravastatin, and rosuvastatin were investigated in vitro using human umbilical vein endothelial cells (HUVECs). Regulation of OATP1A2 by the TGF-β/ALK1 pathway was evaluated using bone morphogenetic protein 9 (BMP-9), a selective ALK1 agonist, and LDN193189, an ALK1 antagonist. We showed that statin accumulation in HUVECs requires OATP1A2-mediated uptake but is also affected by efflux transporters (i.e., P-glycoprotein, breast cancer resistance protein). Absorptive flux (i.e., apical-to-basolateral) for all statins was higher than secretory flux (i.e., basolateral-to-apical) and was decreased by an OATP inhibitor (i.e., estrone-3-sulfate). OATP1A2 protein expression, statin uptake, and cellular monolayer permeability were increased by BMP-9 treatment. This effect was attenuated in the presence of LDN193189. Apical-to-basolateral statin transport across human endothelial cellular monolayers requires functional expression of OATP1A2, which can be controlled by therapeutically targeting TGF-β/ALK1 signaling. Taken together with our previous work, the present data show that OATP-mediated drug transport is a critical mechanism in facilitating neuroprotective drug disposition across endothelial barriers of the blood-brain barrier. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0COA of Formula: C32H39NO4).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.COA of Formula: C32H39NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Sakolish, Courtney et al. published their research in Toxicology in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Analysis of reproducibility and robustness of a human microfluidic four-cell liver acinus microphysiology system (LAMPS) was written by Sakolish, Courtney;Reese, Celeste E.;Luo, Yu-Syuan;Valdiviezo, Alan;Schurdak, Mark E.;Gough, Albert;Taylor, D. Lansing;Chiu, Weihsueh A.;Vernetti, Lawrence A.;Rusyn, Ivan. And the article was included in Toxicology in 2021.Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

A human microfluidic four-cell liver acinus microphysiol. system (LAMPS), was evaluated for reproducibility and robustness as a model for drug pharmacokinetics and toxicol. The model was constructed using primary human hepatocytes or human induced pluripotent stem cell (iPSC)-derived hepatocytes and 3 human cell lines for the endothelial, Kupffer and stellate cells. The model was tested in two laboratories and demonstrated to be reproducible in terms of basal function of hepatocytes, Terfenadine metabolism, and effects of Tolcapone (88μM), Troglitazone (150μM), and caffeine (600μM) over 9 days in culture. Addnl. experiments compared basal outputs of albumin, urea, lactate dehydrogenase (LDH) and tumor necrosis factor (TNF)α, as well as drug metabolism and toxicity in the LAMPS model, and in 2D cultures seeded with either primary hepatocytes or iPSC-hepatocytes. Further experiments to study the effects of Terfenadine (10μM), Tolcapone (88μM), Trovafloxacin (150μM with or without 1μg/mL lipopolysaccharide), Troglitazone (28μM), Rosiglitazone (0.8μM), Pioglitazone (3μM), and caffeine (600μM) were carried out over 10 days. We found that both primary human hepatocytes and iPSC-derived hepatocytes in 3D culture maintained excellent basal liver function and Terfenadine metabolism over 10 days compared the same cells in 2D cultures. In 2D, non-overlay monolayer cultures, both cell types lost hepatocyte phenotypes after 48 h. With respect to drug effects, both cell types demonstrated comparable and more human-relevant effects in LAMPS, as compared to 2D cultures. Overall, these studies show that LAMPS is a robust and reproducible in vitro liver model, comparable in performance when seeded with either primary human hepatocytes or iPSC-derived hepatocytes, and more physiol. and clin. relevant than 2D monolayer cultures. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Michiba, Kazuyoshi et al. published their research in Drug Metabolism & Disposition in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Quality Control of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Usefulness of human jejunal spheroid-derived differentiated intestinal epithelial cells for the prediction of intestinal drug absorption in humans was written by Michiba, Kazuyoshi;Maeda, Kazuya;Shimomura, Osamu;Miyazaki, Yoshihiro;Hashimoto, Shinji;Oda, Tatsuya;Kusuhara, Hiroyuki. And the article was included in Drug Metabolism & Disposition in 2022.Quality Control of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

This study aimed to demonstrate the usefulness of human jejunal spheroid-derived differentiated intestinal epithelial cells as a novel in vitro model for clarifying the impact of intestinal drug-metabolizing enzymes and transporters on the intestinal absorption of substrate drugs in humans. Three-dimensional human intestinal spheroids were successfully established from surgical human jejunal specimens and expanded for a long period using L-WRN-conditioned medium, which contains Wnt3a, R-spondin 3, and noggin. The mRNA expression levels of intestinal pharmacokinetics-related genes in the human jejunal spheroid-derived differentiated intestinal epithelial cells were drastically increased over a 5-day period after seeding compared with those in human jejunal spheroids and were approx. the same as those in human jejunal tissue over a culture period of at least 13 days. Activities of typical drug-metabolizing enzymes [cytochrome P 450 (CYP) 3A, CYP2C9, uridine 5-diphospho-glucuronosyltransferase 1A, and carboxylesterase 2] and uptake/efflux transporters [peptide transporter 1/solute carrier 15A1], P-glycoprotein, and breast cancer resistance protein) in the differentiated cells were confirmed. Furthermore, intestinal availability (Fg) values estimated from the apical-to-basolateral permeation clearance across cell monolayer showed a good correlation with the in vivo Fg values in humans for five CYP3A substrate drugs (Fg range, 0.35-0.98). In conclusion, the functions of major intestinal drug-metabolizing enzymes and transporters could be maintained in human jejunal spheroid-derived differentiated intestinal epithelial cells. This model would be useful for the quant. evaluation of the impact of intestinal drug-metabolizing enzymes and transporters on the intestinal absorption of substrate drugs in humans. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Quality Control of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Quality Control of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Vrana, Branislav et al. published their research in Environmental Pollution (Oxford, United Kingdom) in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.COA of Formula: C32H39NO4

In situ calibration of polar organic chemical integrative sampler (POCIS) for monitoring of pharmaceuticals in surface waters was written by Vrana, Branislav;Urik, Jakub;Fedorova, Ganna;Svecova, Helena;Grabicova, Katerina;Golovko, Oksana;Randak, Tomas;Grabic, Roman. And the article was included in Environmental Pollution (Oxford, United Kingdom) in 2021.COA of Formula: C32H39NO4 The following contents are mentioned in the article:

POCIS is the most widely applied passive sampler of polar organic substances, because it was one of the first com. available samplers for that purpose on the market, but also for its applicability for a wide range of substances and conditions. Its main weakness is the variability of sampling performance with exposure conditions. In our study we took a pragmatic approach and performed in situ calibration for a set of 76 pharmaceuticals and their metabolites in five sampling campaigns in surface water, covering various temperature and flow conditions. In individual campaigns, RS were calculated for up to 47 compounds ranging from 0.01 to 0.63 L d-1, with the overall median value of 0.10 L d-1. No clear changes of RS with water temperature or discharge could be found for any of the investigated substances. The absence of correlation of exptl. RS with phys.-chem. properties in combination with the lack of mechanistic understanding of compound uptake to POCIS implies that practical estimation of aqueous concentrations from uptake in POCIS depends on compound-specific exptl. calibration data. Performance of POCIS was compared with grab sampling of water in seven field campaigns comprising multiple sampling sites, where sampling by both methods was done in parallel. The comparison showed that for 25 of 36 tested compounds more than 50% of POCIS-derived aqueous concentrations did not differ from median of grab sampling values more than by a factor of 2. Further, for 30 of 36 compounds, more than 80% of POCIS data did not differ from grab sampling data more than by a factor of 5. When accepting this level of accuracy, in situ derived sampling rates are sufficiently robust for application of POCIS for identification of spatial and temporal contamination trends in surface waters. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0COA of Formula: C32H39NO4).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.COA of Formula: C32H39NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wang, Shiru et al. published their research in Water Research in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.SDS of cas: 83799-24-0

Suspect screening to support source identification and risk assessment of organic micropollutants in the aquatic environment of a Sub-Saharan African urban center was written by Wang, Shiru;Wasswa, Joseph;Feldman, Anna C.;Kabenge, Isa;Kiggundu, Nicholas;Zeng, Teng. And the article was included in Water Research in 2022.SDS of cas: 83799-24-0 The following contents are mentioned in the article:

Organic micropollutants (OMPs) are contaminants of global concern and have garnered increasing attention in Africa, particularly in urban and urbanizing areas of Sub-Saharan Africa (SSA). In this work, we coupled suspect screening enabled by liquid chromatog.-high-resolution mass spectrometry (LC-HRMS) with multivariate anal. to characterize OMPs in wastewater, surface water, and groundwater samples collected from Kampala, the capital and largest city of Uganda. Suspect screening prioritized and confirmed 157 OMPs in Kampala samples for target quantification. Many OMPs detected in Kampala samples occurred within concentration ranges similar to those documented in previous studies reporting OMP occurrence in SSA, but some have never or rarely been quantified in environmental water samples from SSA. Hierarchical cluster anal. established the source-related co-occurrence profiles of OMPs. Partial least squares regression and multiple linear regression analyses further pinpointed the concentration of nitrate and the content of a fluorescent organic matter component with excitation/emission maxima around 280/330 nm as predictors for the sample-specific cumulative concentrations of OMPs, suggesting the likely contribution of diffuse runoff and wastewater discharges to OMP occurrence in the aquatic environment of Kampala. Parallel calculations of exposure-activity ratios and multi-substance potentially affected fractions provided insights into the potential for biol. effects associated with OMPs and highlighted the importance of expanded anal. coverage for screening-level risk assessments. Overall, our study demonstrates a versatile database-driven screening and data anal. methodol. for the multipronged characterization of OMP contamination in a representative SSA urban center. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0SDS of cas: 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.SDS of cas: 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Suhre, Karsten et al. published their research in Metabolites in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Category: piperidines

Matching Drug Metabolites from Non-Targeted Metabolomics to Self-Reported Medication in the Qatar Biobank Study was written by Suhre, Karsten;Stephan, Nisha;Zaghlool, Shaza;Triggle, Chris R.;Robinson, Richard J.;Evans, Anne M.;Halama, Anna. And the article was included in Metabolites in 2022.Category: piperidines The following contents are mentioned in the article:

Modern metabolomics platforms are able to identify many drug-related metabolites in blood samples. Applied to population-based biobank studies, the detection of drug metabolites can then be used as a proxy for medication use or serve as a validation tool for questionnaire-based health assessments. However, it is not clear how well detection of drug metabolites in blood samples matches information on self-reported medication provided by study participants. Here, we curate free-text responses to a drug-usage questionnaire from 6000 participants of the Qatar Biobank (QBB) using standardized WHO Anatomical Therapeutic Chem. (ATC) Classification System codes and compare the occurrence of these ATC terms to the detection of drug-related metabolites in matching blood plasma samples from 2807 QBB participants for which we collected non-targeted metabolomics data. We found that the detection of 22 drug-related metabolites significantly associated with the self-reported use of the corresponding medication. Good agreement of self-reported medication with non-targeted metabolomics was observed, with self-reported drugs and their metabolites being detected in a same blood sample in 79.4% of the cases. On the other hand, only 29.5% of detected drug metabolites matched to self-reported medication. Possible explanations for differences include under-reporting of over-the-counter medications from the study participants, such as paracetamol, misannotation of low abundance metabolites, such as metformin, and inability of the current methods to detect them. Taken together, our study provides a broad real-world view of what to expect from large non-targeted metabolomics measurements in population-based biobank studies and indicates areas where further improvements can be made. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Category: piperidines).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Category: piperidines

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Seiwert, Bettina et al. published their research in Water Research in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Ozonation products from trace organic chemicals in municipal wastewater and from metformin: peering through the keyhole with supercritical fluid chromatography-mass spectrometry was written by Seiwert, Bettina;Nihemaiti, Maolida;Bauer, Coretta;Muschket, Matthias;Sauter, Daniel;Gnirss, Regina;Reemtsma, Thorsten. And the article was included in Water Research in 2021.Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

Ozonation is an important process to further reduce the trace organic chems. (TrOCs) in treated municipal wastewater before discharge into surface waters, and is expected to form products that are more oxidized and more polar than their parent compounds Many of these ozonation products (OPs) are biodegradable and thus removed by post-treatment (e.g., aldehydes). Most studies on OPs of TrOCs in wastewater rely on reversed-phase liquid chromatog.- mass spectrometry (RPLC-MS), which is not suited for highly polar analytes. In this study, supercritical fluid chromatog. combined with high resolution MS (SFC-HRMS) was applied in comparison to the generic RPLC-HRMS to search for OPs in ozonated wastewater treatment plant effluent at pilot-scale. While comparable results were obtained from these two techniques during suspect screenings for known OPs, a total of 23 OPs were only observed by SFC-HRMS via non-targeted screening. Several SFC-only OPs were proposed as the derivatives of methoxymethylmelamines, phenolic sulfates/sulfonates, and metformin; the latter was confirmed by laboratory-scale ozonation experiments A complete ozonation pathway of metformin, a widespread and extremely hydrophilic TrOC in aquatic environment, was elaborated based on SFC-HRMS anal. Five of the 10 metformin OPs are reported for the first time in this study. Three different dual-media filters were compared as post-treatments, and a combination of sand/anthracite and fresh post-granular activated carbon proved most effective in OPs removal due to the addnl. adsorption capacity. However, six SFC-only OPs, two of which originating from metformin, appeared to be persistent during all post-treatments, raising concerns on their occurrence in drinking water sources impacted by wastewater. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem