He, Yuan’s team published research in Science of the Total Environment in 2021 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Reference of Triacetonamine

Reference of TriacetonamineOn September 1, 2021 ,《Catalytic ozonation for metoprolol and ibuprofen removal over different MnO2 nanocrystals: Efficiency, transformation and mechanism》 was published in Science of the Total Environment. The article was written by He, Yuan; Wang, Liangjie; Chen, Zhan; Shen, Bo; Wei, Jinshan; Zeng, Ping; Wen, Xianghua. The article contains the following contents:

Manganese dioxide has been widely recognized as catalyst in catalytic ozonation for organic pollutants removal from wastewater in recent decades. However, few studies focus on the structure-activity relationship of MnO2 and catalytic ozonation mechanism in water. In the present study, the oxidative reactivity of three different crystal phases of MnO2 corresponding to α-MnO2, β-MnO2 and γ-MnO2 towards metoprolol (MET) and ibuprofen (IBU) were evaluated. α-MnO2 was found to contain the most abundant oxygen vacancy and readily reducible surface adsorbed oxygen (O2-, O-, OH-), which facilitated an increase of ozone utilization and the highest catalytic performance with 99% degradation efficiency for IBU and MET. α-MnO2 was then selected to investigate the optimum key operating parameters with a result of catalyst dosage 0.1 g/L, ozone dosage 1 mg/min and an initial pH 7. The introduction of α-MnO2 promoted reactive oxygen species (O2-, O-, OH-) generation which played significant roles in IBU degradation Probable degradation pathways of MET and IBU were proposed according to the organic intermediates identified and the reaction sites based on d. function theory (DFT) calculations The present study deepened our understanding on the MnO2 catalyzed ozonation and provided reference to enhance the process efficiency. The experimental part of the paper was very detailed, including the reaction process of Triacetonamine(cas: 826-36-8Reference of Triacetonamine)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Reference of Triacetonamine

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Sun, Jian’s team published research in Journal of Hazardous Materials in 2022 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.SDS of cas: 826-36-8

SDS of cas: 826-36-8On May 5, 2022 ,《Modulated construction of Fe-based MOF via formic acid modulator for enhanced degradation of sulfamethoxazole:Design, degradation pathways, and mechanism》 appeared in Journal of Hazardous Materials. The author of the article were Sun, Jian; Wan, Jinquan; Wang, Yan; Yan, Zhicheng; Ma, Yongwen; Ding, Su; Tang, Min; Xie, Yongchang. The article conveys some information:

Metal-organic frameworks (MOFs) have attracted more attention because of their excellent environmental catalytic capabilities. Modulation approach as an advanced assistant strategy is vital essential to enhancing the performance of MOFs. In this study, the modulated method was used to successfully synthesize a group of Fe-based MOFs, with formic acid as the modulator on the synthesis mixture The most modulated sample Fe-MOFs-2 exhibit high sp. surface areas and higher catalytic activity, which could effectively degrade SMX via PS activation, with almost 95% removal efficiency within 120 min. The results revealed that the % RSE of modulated Fe-MOFs-2 increased from 2.31 to 3.27 when compared with the origin Fe-MOFs. This may be due to the addition of formic acid induces the formation of more coordinatively unsaturated metal sites in the catalyst, resulting in structural defects. In addition, the quenching experiment and EPR anal. verified SO-4·and·OH as the major active free radicals in the degradation process. Modulated Fe-MOFs-2 demonstrated good reusability and stability under fifth cycles. Finally, four possible degradation pathways and catalytic mechanism of Fe-MOFs-2 was tentatively proposed. Our work provides insights into the rational design of modulated Fe-MOFs as promising heterogeneous catalysts for advanced wastewater treatment. The experimental part of the paper was very detailed, including the reaction process of Triacetonamine(cas: 826-36-8SDS of cas: 826-36-8)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.SDS of cas: 826-36-8

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wang, Gen’s team published research in Journal of Hazardous Materials in 2022 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Category: piperidines

Category: piperidinesOn May 5, 2022 ,《Monodispersed CuO nanoparticles supported on mineral substrates for groundwater remediation via a nonradical pathway》 appeared in Journal of Hazardous Materials. The author of the article were Wang, Gen; Zhang, Yue; Ge, Lei; Liu, Zhuoyue; Zhu, Xiurong; Yang, Shengjiong; Jin, Pengkang; Zeng, Xiangkang; Zhang, Xiwang. The article conveys some information:

Nonradical oxidation based on singlet oxygen (1O2) has attracted great interest in groundwater remediation due to the selective oxidation property and good resistance to background constituents. Herein, recoverable CuO nanoparticles (NPs) supported on mineral substrates (SiO2) were prepared by calcination of surface-coated metal-plant phenolic networks and explored for peroxymonosulfate (PMS) activation to generate 1O2 for degrading organic pollutants in groundwater. CuO NPs with a close particle size (40 nm) were spatially monodispersed on SiO2 substrates, allowing highly exposure of active sites and consequently leading to outstanding catalytic performance. Efficient removal of various organic pollutants was obtained by the supported CuO NPs/PMS system under wide operation conditions, e.g., working pH, background anions and natural organic matters. Chem. scavenging experiments, ESR tests, furfuryl alc. decay and solvent dependency experiments confirmed the formation of 1O2 and its dominant role in pollutants removal. In situ characterization with ATR-FTIR and Raman spectroscopy and computational calculation revealed that a redox cycle of surface Cu(II)-Cu(III)-Cu(II) was responsible for the generation of 1O2. The feasibility of the supported CuO NPs/PMS for actual groundwater remediation was evaluated via a flow-through test in a fixed-bed column, which manifested long-term durability, high mineralization ratio and low metal ion leaching. The experimental part of the paper was very detailed, including the reaction process of Triacetonamine(cas: 826-36-8Category: piperidines)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Category: piperidines

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ohira, Kazuki’s team published research in Materials Chemistry Frontiers in 2021 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Category: piperidines

《Development of phenazine-2,3-diol-based photosensitizers: effect of formyl groups on singlet oxygen generation》 was published in Materials Chemistry Frontiers in 2021. These research results belong to Ohira, Kazuki; Imato, Keiichi; Ooyama, Yousuke. Category: piperidines The article mentions the following:

Phenazine-2,3-diol derivatives KO-0-3, which have zero to three formyl groups, resp., have been developed as photosensitizers (PSs) possessing the ability to generate singlet oxygen (1O2). The photoabsorption bands of KO-0-3 are significantly red-shifted compared to those of phenazine-2,3-MOM (methoxymethyl) derivatives 5-8, whose hydroxy and formyl groups are protected, and have onsets at around 600-650 nm. Furthermore, the fluorescence quantum yields (Φfl) of KO-0-3 (Φfl = 0.024-0.097) are lower than those of 5-8 (Φfl = 0.34-0.46) in solution To gain insight into the 1O2 generation properties of KO-0-3, we evaluated the 1O2 quantum yields (ΦΔ) and rate constants (kobs), and demonstrated that KO-1-3 possess a higher ability to generate 1O2 under visible light irradiation than those of 5-8. Moreover, it was found that the ΦΔ values of KO-0-3 increase in the order of KO-0 (0.036) < KO-1 (0.22) < KO-2 (0.33) < KO-3 (0.41) with increasing number of formyl groups. This result indicates that formyl groups facilitate the intersystem crossing (ISC) from the lowest singlet excited states of the PSs (S1) to the triplet excited states (Tn) according to El-Sayed′s rule. Consequently, this work provides useful knowledge in mol. design of efficient phenazine-2,3-diol-based PSs for photodynamic therapy (PDT). In the experimental materials used by the author, we found Triacetonamine(cas: 826-36-8Category: piperidines)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Category: piperidines

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Huang, Renfeng’s team published research in Cell Reports Physical Science in 2021 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.COA of Formula: C9H17NO

COA of Formula: C9H17NOOn September 22, 2021 ,《Tuning reaction pathways of peroxymonosulfate-based advanced oxidation process via defect engineering》 was published in Cell Reports Physical Science. The article was written by Huang, Renfeng; Zhu, Yunmin; Curnan, Matthew T.; Zhang, Yongqing; Han, Jeong Woo; Chen, Yan; Huang, Shaobin; Lin, Zhang. The article contains the following contents:

Peroxymonosulfate (PMS)-based advanced oxidation process (AOP) has attracted great attention as an effective technique for oxidatively decomposing organic pollutants. The PMS activation mechanisms, nevertheless, are still ambiguous in many cases, and, thus, controlling PMS activation pathways for efficient pollutant removal remains challenging. In this work, taking defective PrBa0.5Sr0.5Co1.5Fe0.5O5+v (PBSCF) as a model system, we demonstrate that oxygen vacancies (V•bulo) strongly promote PMS-based AOP, and PMS activation pathways are effectively tuned. Excessive V•bulos are found to modify the surface charge distribution, change PMS adsorption configuration, and break the S-O bond of PMS. As a result, the radical process is promoted, and the predominant nonradical activation pathway shifts from an electron transfer process to singlet oxygen formation. Our mechanistic understanding can guide the rational design of catalysts for efficient water remediation. In the part of experimental materials, we found many familiar compounds, such as Triacetonamine(cas: 826-36-8COA of Formula: C9H17NO)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.COA of Formula: C9H17NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Li, Ning’s team published research in Environmental Science & Technology in 2021 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Safety of Triacetonamine

Li, Ning; Li, Rui; Duan, Xiaoguang; Yan, Beibei; Liu, Wen; Cheng, Zhanjun; Chen, Guanyi; Hou, Li’an; Wang, Shaobin published their research in Environmental Science & Technology on December 7 ,2021. The article was titled 《Correlation of active sites to generated reactive species and degradation routes of organics in peroxymonosulfate activation by Co-loaded carbon》.Safety of Triacetonamine The article contains the following contents:

Peroxymonosulfate (PMS)-based advanced oxidation processes (PMS-AOPs) as an efficient strategy for organic degradation are highly dependent on catalyst design and structured active sites. However, the identification of the active sites and their relationship with reaction mechanisms for organic degradation are not fully understood for a composite catalyst due to the complex structure. Herein, we developed a family of Co encapsulated in N-doped carbons (Co-PCN) with tailored types and contents of active sites via manipulated pyrolysis for PMS activation and ciprofloxacin (CIP) degradation, focusing on the correlation of active sites to generated reactive species and degradation routes of organics The structure-function relationships between the different active sites in Co-PCN catalysts and reactive oxygen species (ROS), as well as bond breaking position of CIP, were revealed through regression anal. and d. functional theory calculation Co-Nx, O-C=O, C=O, graphitic N, and defects in Co-PCN stimulate the generation of 1O2 for oxidizing the C-C bond in the piperazine ring of CIP into C=O. The substitution of F by OH and hydroxylation of the piperazine ring might be induced by SO4•- and •OH, whose formation was affected by C-O, Co(0), Co-Nx, graphitic N, and defects. The findings provided new insights into reaction mechanisms in PMS-AOP systems and rational design of catalysts for ROS-oriented degradation of pollutants. In the experimental materials used by the author, we found Triacetonamine(cas: 826-36-8Safety of Triacetonamine)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Safety of Triacetonamine

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Shah, Ayaz A.’s team published research in Energies (Basel, Switzerland) in 2020 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Application of 826-36-8

In 2020,Energies (Basel, Switzerland) included an article by Shah, Ayaz A.; Toor, Saqib S.; Seehar, Tahir H.; Nielsen, Rasmus S.; Nielsen, Asbjoern H.; Pedersen, Thomas H.; Rosendahl, Lasse A.. Application of 826-36-8. The article was titled 《Bio-crude production through aqueous phase recycling of hydrothermal liquefaction of sewage sludge》. The information in the text is summarized as follows:

Hydrothermal liquefaction (HTL) is a promising technol. for the production of bio-crude. However, some unresolved issues still exist within HTL, which need to be resolved before its promotion on a com. scale. The management of the aqueous phase is one of the leading challenges related to HTL. In this study, the sewage sludge has been liquefied at 350°C with and without catalyst (K2CO3). Subsequently, aqueous phase recycling was applied to investigate the effect of recycling on bio-crude properties. Obtained results showed that the energy recovery in the form of bio-crude increased by 50% via aqueous phase recirculation, whereas nitrogen content in the bio-crude was approx. doubled after eight rounds of recycling. GCMS characterization of the aqueous phase indicated acetic acid as a major water-soluble compound, which employed as a catalyst (0.56 M), and resulted in a negligible increase in bio-crude yield. ICP-AES highlighted that the majority of the inorganics were transferred to the solid phase, while the higher accumulation of potassium and sodium was found in the aqueous phase via successive rounds of recycling. In addition to this study using Triacetonamine, there are many other studies that have used Triacetonamine(cas: 826-36-8Application of 826-36-8) was used in this study.

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Application of 826-36-8

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Peng, Chuan’s team published research in Energy (Oxford, United Kingdom) in 2021 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Recommanded Product: Triacetonamine

Recommanded Product: TriacetonamineOn March 15, 2021, Peng, Chuan; Feng, Wei; Zhang, Yanhui; Guo, Shifeng; Yang, Zhile; Liu, Xiangmin; Wang, Tengfei; Zhai, Yunbo published an article in Energy (Oxford, United Kingdom). The article was 《Low temperature co-pyrolysis of food waste with PVC-derived char: Products distributions, char properties and mechanism of bio-oil upgrading》. The article mentions the following:

The main components of municipal solid waste (MSW) include food waste (FW) and polyvinyl chloride (PVC), which present an opportunity to convert energy or value-added products through low-temperature synergetic pyrolysis. In this study, the characteristics of char and bio-oil derived from MSW, FW and PVC feedstocks via pyrolysis at relatively low temperatures (200-300 °C) for 60 min were investigated. The results revealed that the transformation of PVC to HCl gas production started at a temperature of > 200 °C. The oxygenated carbon groups on the char surface were decomposed at elevated reaction temperatures The relative mol. mass of bio-oil derived from FW increased when PVC-derived char was used as a catalyst at 250 °C. In addition, active functional groups and pore structures were formed through synergistic pyrolysis. This work provides information regarding the possible route underlying the network of char and bio-oil production from the synergistic conversion of FW and PVC-derived char. The experimental part of the paper was very detailed, including the reaction process of Triacetonamine(cas: 826-36-8Recommanded Product: Triacetonamine)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Recommanded Product: Triacetonamine

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Chen, Ping’s team published research in Environmental Science & Technology in 2019 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Electric Literature of C9H17NO

Chen, Ping; Blaney, Lee; Cagnetta, Giovanni; Huang, Jun; Wang, Bin; Wang, Yujue; Deng, Shubo; Yu, Gang published an article on February 5 ,2019. The article was titled 《Degradation of Ofloxacin by Perylene Diimide Supramolecular Nanofiber Sunlight-Driven Photocatalysis》, and you may find the article in Environmental Science & Technology.Electric Literature of C9H17NO The information in the text is summarized as follows:

This study describes a promising sunlight-driven photocatalyst for the treatment of ofloxacin and other fluoroquinolone antibiotics in water and wastewater. Perylene diimide (PDI) supramol. nanofibers, which absorb a broad spectrum of sunlight, were prepared via a facile acidification polymerization protocol. Under natural sunlight, the PDI photocatalysts achieved rapid treatment of fluoroquinolone antibiotics, including ciprofloxacin, enrofloxacin, norfloxacin, and ofloxacin. The fastest degradation was observed for ofloxacin, which had a half-life of 2.08 min for the investigated conditions. Various light sources emitting in the UV-vis spectrum were tested, and blue light was found to exhibit the fastest ofloxacin transformation kinetics due to the strong absorption by the PDI catalyst. Reactive species, namely, h+, 1O2, and O2•-, comprised the primary photocatalytic mechanisms for ofloxacin degradation Frontier electron d. calculations and mass spectrometry were used to verify the major degradation pathways of ofloxacin by the PDI-sunlight photocatalytic system and identify the transformation products of ofloxacin, resp. Degradation mainly occurred through demethylation at the piperazine ring, ketone formation at the morpholine moiety, and aldehyde reaction at the piperazinyl group. An overall mechanism was proposed for ofloxacin degradation in the PDI-sunlight photocatalytic system, and the effects of water quality constituents were examined to determine performance in real water/wastewater systems. Ultimately, the aggregate results from this study highlight the suitability of the PDI-sunlight photocatalytic system to treat antibiotics in real water and wastewater systems. In the part of experimental materials, we found many familiar compounds, such as Triacetonamine(cas: 826-36-8Electric Literature of C9H17NO)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Electric Literature of C9H17NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wu, Wenjie’s team published research in ACS Applied Materials & Interfaces in 2021 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Name: Triacetonamine

Name: TriacetonamineOn November 10, 2021 ,《Defect-Engineered Graphene Films as Ozonation Catalysts for the Devastation of Sulfamethoxazole: Insights into the Active Sites and Oxidation Mechanism》 appeared in ACS Applied Materials & Interfaces. The author of the article were Wu, Wenjie; Bai, Liang; Song, Yenan; Su, Yuanting; Jiang, Kai; Sun, Haitao; Zhen, Guangyin; Shen, Yan; Yuan, Qinghong; Sun, Zhuo. The article conveys some information:

Graphene-based catalysts have been widely applied for catalytic ozonation. However, as it is difficult to obtain graphene with high structural precision, it is currently unfeasible to comprehend the relationships between the intrinsic structure of the layered carbon catalysts with its catalytic activities. Here, an advanced plasma-assisted etch strategy was used to fine tune the ozonation activity of monolayered graphene films by tailoring the defect types. Raman mapping indicated that the defects of the as-prepared monolayered graphene films were predominantly sp3, vacancy, and boundary-type defects, resp. The roles and contributions of these active defects in manipulating the oxidative potential of monolayered graphene films were revealed by quenching experiments, ESR results, and d. functional theory calculations The catalytic results showed that the monolayered graphene films with boundary-like defects exhibited the best catalytic performance toward the degradation of sulfamethoxazole. This work contributes new insights into the design of high-efficiency carbonaceous catalysts by structuring addnl. defective sites. In the part of experimental materials, we found many familiar compounds, such as Triacetonamine(cas: 826-36-8Name: Triacetonamine)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Name: Triacetonamine

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem