Carocci, Alessia’s team published research in ChemMedChem in 16 | CAS: 826-36-8

ChemMedChem published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, Formula: C9H17NO.

Carocci, Alessia published the artcileSynthesis and Evaluation of Voltage-Gated Sodium Channel Blocking Pyrroline Derivatives Endowed with Both Antiarrhythmic and Antioxidant Activities, Formula: C9H17NO, the publication is ChemMedChem (2021), 16(3), 578-588, database is CAplus and MEDLINE.

Under the hypothesis that cardioprotective agents might benefit from synergism between antiarrhythmic activity and antioxidant properties, a small series of mexiletine analogs were coupled with the 2,2,5,5-tetramethylpyrroline moiety, known for its antioxidant effect, in order to obtain dual-acting drugs potentially useful in the protection of the heart against post-ischemic reperfusion injury. The pyrroline derivatives reported herein were found to be more potent as antiarrhythmic agents than mexiletine and displayed antioxidant activity. The most interesting tetramethylpyrroline congener, a tert-butyl-substituted analog, was at least 100 times more active as an antiarrhythmic than mexiletine.

ChemMedChem published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, Formula: C9H17NO.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Wan, Wen-jing’s team published research in Gaoxiao Huaxue Gongcheng Xuebao in 34 | CAS: 826-36-8

Gaoxiao Huaxue Gongcheng Xuebao published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C20H18BrN3, Product Details of C9H17NO.

Wan, Wen-jing published the artcileImprovement of 2,2,6,6-tetramethyl-4-piperidinamine synthesis via catalytic amination, Product Details of C9H17NO, the publication is Gaoxiao Huaxue Gongcheng Xuebao (2020), 34(2), 457-462, database is CAplus.

2,2,6,6-Tetramethylpiperidinamine as light stabilizer of hindered amines was synthesized via catalytic amination of 2,2,6,6-tetramethylpiperidone. Imine formation was promoted by adjusting reaction system pH, which facilitated the catalytic amination under mild condition. The selectivity of the product was increased. When studied under pH∼12.5, reaction temperature 60°C and pressure 2 MPa, the selectivity of TEMP was up to 95.2%. The result shows that pH=12.5 is the most favorable condition for the formation of TEMP.

Gaoxiao Huaxue Gongcheng Xuebao published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C20H18BrN3, Product Details of C9H17NO.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Diao, Zeng-Hui’s team published research in Science of the Total Environment in 660 | CAS: 826-36-8

Science of the Total Environment published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, Recommanded Product: 2,2,6,6-Tetramethylpiperidin-4-one.

Diao, Zeng-Hui published the artcileInsights on the nitrate reduction and norfloxacin oxidation over a novel nanoscale zero valent iron particle: Reactivity, products, and mechanism, Recommanded Product: 2,2,6,6-Tetramethylpiperidin-4-one, the publication is Science of the Total Environment (2019), 541-549, database is CAplus and MEDLINE.

Herein, the application of a novel acid mine drainage-based nanoscale zero valent iron (AMD-based nZVI) for the remediation of nitrate and norfloxacin (NOR) was studied. Exptl. results indicated that the catalytic reactivity of AMD-based nZVI toward nitrate reduction was superior to that of iron salt-based nanoscale zero valent iron (Iron salt-based nZVI). The presence of ultrasound irradiation could significantly enhance the reactivity toward both the nitrate reduction and NOR oxidation processes. The optimal efficiencies of nitrate and NOR by AMD-based nZVI/US process could be kept 96 and 94% within 120 min, resp. Ammonia was identified as a major product in nitrate reduction process, while three oxidation products were observed in NOR degradation process. Both reduction reaction of nitrate from AMD-based nZVI and oxidation reaction of NOR from US-assisted Fenton system might be involved in AMD-based nZVI/US process. The AMD-based nZVI/US process showed a better performance on the removal of NOR compared with that of nitrate. The findings of the present work could be as a guide and show that AMD-based nZVI/US process is feasible for the remediation of both nitrate and NOR in real wastewater.

Science of the Total Environment published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, Recommanded Product: 2,2,6,6-Tetramethylpiperidin-4-one.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Yu, Jiaxin’s team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 421 | CAS: 826-36-8

Chemical Engineering Journal (Amsterdam, Netherlands) published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C26H41N5O7S, Name: 2,2,6,6-Tetramethylpiperidin-4-one.

Yu, Jiaxin published the artcileHighly-efficient and stable MgCo2O4 spinel for bisphenol a removal by activating peroxymonosulfate via radical and non-radical pathways, Name: 2,2,6,6-Tetramethylpiperidin-4-one, the publication is Chemical Engineering Journal (Amsterdam, Netherlands) (2021), 421(Part_1), 129498, database is CAplus.

Nowadays, the limited catalytic efficiency, secondary pollution of metal leaching and stability decrease during reuse bring challenges to practical application of heterogeneous catalysts in sulfate radical-based advanced oxidation processes. Herein, MgCo2O4 spinel was synthesized through hydrothermal method and tested for its catalytic performance of activating PMS by using bisphenol A (BPA) as the target pollutant. MgCo2O4/PMS system can degrade 99.6% BPA efficiently at pH 7.2 within 10 min. The morphol. and physicochem. properties of MgCo2O4 were characterized by SEM (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Unlike conventional PMS activation, radical and non-radical pathways were identified through utilizing XPS, ESR (EPR), and radical quenching experiments Tetrahedral Mg2+ might make MgCo2O4 more stable and promote the Co2+/Co3+ redox, which dominated the catalytic ability of MgCo2O4. MgCo2O4 spinel is efficient, stable, low-cost, and simple to synthesize, leading to BPA degradation via both radical and non-radical pathways. This research would extend the mechanism and potential application of spinel catalysis in water treatment.

Chemical Engineering Journal (Amsterdam, Netherlands) published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C26H41N5O7S, Name: 2,2,6,6-Tetramethylpiperidin-4-one.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Yousif, M. N. M.’s team published research in Russian Journal of General Chemistry in 89 | CAS: 826-36-8

Russian Journal of General Chemistry published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C17H37NO3, Computed Properties of 826-36-8.

Yousif, M. N. M. published the artcileSynthesis and Anticancer Activity of New Substituted Piperidinones Linked to Pyrimidine, Thiazole, and Triazole Glycoside Derivatives, Computed Properties of 826-36-8, the publication is Russian Journal of General Chemistry (2019), 89(8), 1673-1682, database is CAplus.

New piperidinone incorporating pyrimidine, triazine, diazipine, oxatriazine, and thiazole derivatives have been synthesized starting with tetramethylpipridin-4-one. Structures of the newly synthesized compounds are characterized on the basis of spectroscopic and anal. data. The anticancer activity of the prepared compounds has been studied in vitro against HCT-116 and MCF-7 human cancer cells using the MTT assay. A number of compounds demonstrates potent activity towards both cell lines with IC50 values comparable with doxorubicin.

Russian Journal of General Chemistry published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C17H37NO3, Computed Properties of 826-36-8.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Rohland, Philip’s team published research in Materials Advances in 3 | CAS: 826-36-8

Materials Advances published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, SDS of cas: 826-36-8.

Rohland, Philip published the artcileStructural alterations on the TEMPO scaffold and their impact on the performance as active materials for redox flow batteries, SDS of cas: 826-36-8, the publication is Materials Advances (2022), 3(10), 4278-4288, database is CAplus.

Trimethylammonium-2,2,6,6-tetramethylpiperidine-1-oxyl chloride (TMA-TEMPO) has been intensively studied for its usage in aqueous organic redox flow batteries. Straightforward synthesis, reliable electrochem., fast kinetics and high cycling stability are the advantages of this active material. Nevertheless, it has been shown that elevated temperatures and high states of charge accelerate the decomposition of this material. Hence, a comparative study was performed with five new and one known TEMPO derivatives, to elucidate the structure-stability relationship of the TEMPO scaffold and to investigate the influence on the battery performance. The results show that the introduction of linkers between the solubility-promoting group and the piperidyl core or enhanced shielding of the radical has a great impact on the stability during cycling.

Materials Advances published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, SDS of cas: 826-36-8.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Kobayashi, Hirokazu’s team published research in Applied Magnetic Resonance in 51 | CAS: 826-36-8

Applied Magnetic Resonance published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, Product Details of C9H17NO.

Kobayashi, Hirokazu published the artcileMolecular Orientation and Dynamics of a Derivative of 2,2,6,6-Tetramethyl-1-Piperidinyloxyl Radical with a Large Substituent Group Dispersed in 1D-Nanochannels of 2,4,6-Tris(4-Chlorophenoxy)-1,3,5-Triazine Crystal, Product Details of C9H17NO, the publication is Applied Magnetic Resonance (2020), 51(8), 711-724, database is CAplus.

The mol. orientation and dynamics were examined for 4-acetamido-2,2,6,6-tetramethyl-1-piperidinyloxyl (4-acetamido-TEMPO) radicals, which have a larger substituent group than many other TEMPO radicals, dispersed in the one-dimensional (1D) nanochannel of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) with 4-substituted-2,2,6,6-tetramethylpiperidine (R-TEMP; R=OH or H). When TEMPOH (R=OH) was used as a spacer for dispersion in the CLPOT nanochannels, the mol. orientation of 4-acetamido-TEMPO in the CLPOT nanochannels was similar to that of other previously reported 4-substituted-TEMPO (4-X-TEMPO; X=OH, =O or OCH3) radicals. However, the activation energy for the rotational diffusion of 4-acetamido-TEMPO in the CLPOT nanochannels, estimated to be 11 kJ mol-1, was larger than that of other 4-X-TEMPO mols. (6-8 kJ mol-1). These results indicate that the mol. dynamics of 4-X-TEMPO in the CLPOT nanochannels can be controlled by the selection of a larger substituent X at the 4-position in 4-X-TEMPO (in this study, X=NHCOCH3), and also suggest an important concept for the design of new organic magnets.

Applied Magnetic Resonance published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, Product Details of C9H17NO.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Chen, Chen’s team published research in Chemosphere in 301 | CAS: 826-36-8

Chemosphere published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, Name: 2,2,6,6-Tetramethylpiperidin-4-one.

Chen, Chen published the artcileBoron regulates catalytic sites of biochar to enhance the formation of surface-confined complex for improved peroxydisulfate activation, Name: 2,2,6,6-Tetramethylpiperidin-4-one, the publication is Chemosphere (2022), 134690, database is CAplus and MEDLINE.

Biochar has been developed to activate persulfate for wastewater treatment due to its carbon essence, easily-available and low-cost. Efficiently active sites and interfacial electron transfer are highly desired for peroxydisulfate (PDS) activation. In this study, boronic ester structure and defect degree of boron-doped biochar are confirmed as activate sites to improve PDS activation. The performance of pollutants degradation is proven to have structure-activity relationships with both activate sites. Moreover, boron-doped biochar exhibits higher stability and oxidation potential by forming the surface-confined complex, promoting electron transfer from pollutants to complex. The optimized boron-doped biochar has the advantages of adapting to a broad pH range (2.9-10.0), strong resistance to Cl and organic matters, a low activation energy of 11.22 kJ mol-1, and achieving the decomposition of practical dyeing wastewater. Our work provides a promising approach to regulating the interfacial catalytic sites of biochar by doping heteroatom for PDS activation in practical wastewater treatment.

Chemosphere published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, Name: 2,2,6,6-Tetramethylpiperidin-4-one.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Zhao, Zhendong’s team published research in Applied Catalysis, B: Environmental in 309 | CAS: 826-36-8

Applied Catalysis, B: Environmental published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C12H9N3O4, Recommanded Product: 2,2,6,6-Tetramethylpiperidin-4-one.

Zhao, Zhendong published the artcileConstruction of dual active sites on diatomic metal (FeCo-N/C-x) catalysts for enhanced Fenton-like catalysis, Recommanded Product: 2,2,6,6-Tetramethylpiperidin-4-one, the publication is Applied Catalysis, B: Environmental (2022), 121256, database is CAplus.

High metal loading of single-atom catalysts enables excellent catalytic activity, but possibly causes serious aggregation problem. Herein, a series of diat. FeCo-N/C-x (x represents metal content) were skillfully designed and applied to improve the catalytic activity for peroxymonosulfate (PMS) activation toward degrading organic micropollutants. The unprecedented dual active sites, referring to Fe(N3)-Co(N3) moiety and FeCo alloy, are constructed on the obtained FeCo-N/C-x, thereby exhibiting significantly greater performance toward degrading aqueous phenol (e.g., 0.316 min-1 for FeCo-N/C-3) via PMS activation, compared with those of traditional single-atom Co-N/C (0.011 min-1) and Fe-N/C (0.018 min-1). Combined exptl. and theor. calculations demonstrate the independent functions of dual active sites, in which Fe(N3)-Co(N3) and FeCo alloy can decrease the energy barrier of O-O bond cleaving resulting in the formation of high-valent FeCo=O reactive species and singlet oxygen, resp. This study opens up a new platform toward constructing dual active sites for enhanced Fenton-like catalytic activity.

Applied Catalysis, B: Environmental published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C12H9N3O4, Recommanded Product: 2,2,6,6-Tetramethylpiperidin-4-one.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Cai, Weijie’s team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 397 | CAS: 826-36-8

Chemical Engineering Journal (Amsterdam, Netherlands) published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, COA of Formula: C9H17NO.

Cai, Weijie published the artcileMagnetic iron phosphide particles mediated peroxymonosulfate activation for highly efficient elimination of sulfonamide antibiotics, COA of Formula: C9H17NO, the publication is Chemical Engineering Journal (Amsterdam, Netherlands) (2020), 125279, database is CAplus.

transition metal phosphides (TMP) have emerged as a promising catalyst in the environmental catalysis field due to excellent catalytic properties, high conductivity, and long stability. spherical, coral-like iron phosphide (FexP) particles containing FeP orthorhombic and Fe2P hexagonal crystals were prepared by a facile, low-temperature phosphating synthesis strategy. this heterogeneous catalyst, with unique morphol., was first used to activate peroxymonosulfate (PMS) to eliminate sulfadiazine (SDZ). FexP had favorable catalytic activity to activate PMS and could eliminate SDZ up to 98.2% within 24 min. compared to Fe2O3 without further phosphatization treatment, P introduction in Fe2O3 significantly ameliorated catalytic activity for SDZ elimination; the apparent rate constant (kobs) increased 9.1 times. FexP particles exhibited a magnetic property convenient for recycling use. this feature is very different from previously reported TMP catalytic materials. four types of reactive oxygen species (sulfate radical [SO4·], OH, singlet oxygen [1O2], superoxide radical [O2·-]) were detected and played a key role in SDZ elimination by ESR (EPR) in conjunction with radical quenching tests. results opened an avenue to develop and utilize TMP catalytic materials for environmental remediation.

Chemical Engineering Journal (Amsterdam, Netherlands) published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, COA of Formula: C9H17NO.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem