Entooru, Keshamma’s team published research in International Journal of Chemical Studies in 2021 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Reference of Triacetonamine

《GC-MS analysis of bioactive components and evaluation of in-vitro pancreatic lipase inhibitory activity of aqueous extracts of Pleurotus eryngii》 was published in International Journal of Chemical Studies in 2021. These research results belong to Entooru, Keshamma; Srinivasalu, Krishnaprasad Musalappa; Thimmaiah, Sridhar Bilagumba; Rangappa, Haleshappa; Nanjaiah, Shivakumara Kanchidoddi; Kolgi, Rajeev Ramachandra; Bopaiah, Roy Uddapanda. Reference of Triacetonamine The article mentions the following:

Present study was designed to conduct with main purpose to determine bioactive components and evaluation of aqueous extract of Pleurotus eryngii for in-vitro pancreatic lipase inhibitory activity. GC-MS anal. was carried out to determine the bioactive components and in-vitro pancreatic lipase inhibitory assay was carried out to determine IC50 values of aqueous extracts of Pleurotus eryngii. The results of the present study depicted that the aqueous extracts of Pleurotus eryngii possess in-vitro pancreatic lipase inhibitory activities at the concentration of 1-30μg/mL and this could be attributed to the prevailing compounds identified in the GC-MS anal. i.e., conhydrin, di-Et phthalate, phthalic acid-Bu hex-3-yl ester (alkaloids), ar-turmerone (sesquiterpenoid), palmitic acid, myristic acid, phenol and benzoic acid from ethanolic extract of Pleurotus eryngii. In conclusion, polyphenols, alkaloids terpenoids and Vitamin B class of secondary metabolites majorly identified in GC-MS anal. of aqueous extract of Pleurotus eryngii has been reported to possess the in-vitro pancreatic lipase inhibitory activities. Hence, further in-vivo studies in exptl. induced obese animal models could be recommended to access the safety and efficacy of aqueous extracts of Pleurotus eryngii to strongly recommend them as natural antiobesity agents in the formulations of natural antiobesity drugs. The experimental part of the paper was very detailed, including the reaction process of Triacetonamine(cas: 826-36-8Reference of Triacetonamine)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Reference of Triacetonamine

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Li, Guang’s team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2022 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Computed Properties of C9H17NO

《Fe3O4 supported on water caltrop-derived biochar toward peroxymonosulfate activation for urea degradation: the key role of sulfate radical》 was written by Li, Guang; Cao, Xiao-qiang; Meng, Na; Huang, Yi-meng; Wang, Xu-dong; Gao, Yuan-yuan; Li, Xuan; Yang, Ting-shu; Li, Bo-lai; Zhang, Yi-zhen; Lyu, Xian-jun; Liang, Yue. Computed Properties of C9H17NO And the article was included in Chemical Engineering Journal (Amsterdam, Netherlands) on April 1 ,2022. The article conveys some information:

A new type of iron-doped and porous biochar (Fe@BC) derived from water caltrop was systematically investigated to catalyze the organic pollutants degradation by peroxymonosulfate (PMS). The effectiveness of this novel material was tested by treating excessive urea concentrations in swimming pool water. It exhibited good PMS activation capacity, achieving urea removal of 100% within 15 min. The Fe@BC/PMS system exhibited excellent resistance to common anions. Only chloride showed a small inhibitory effect, and the removal efficiency of urea decreased by 10% ([Cl-]0 = 10 mM). Quenching experiments and ESR spectroscopy analyses demonstrated that urea degradation was mainly mediated by the radical pathway, which in turn was dominated by surface-bound sulfate radicals (SO4·-). Further, reusability experiments confirmed the stability of the material. After three cycles, the degradation efficiency can still reach 86%. Therefore, the conversion of water caltrop-derived biochar into a composite catalytic material provides a novel strategy for value-added utilization of aquatic waste biomass, and it is also a promising alternative for the treatment of urea from swimming pool water.Triacetonamine(cas: 826-36-8Computed Properties of C9H17NO) was used in this study.

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Computed Properties of C9H17NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ge, Teng’s team published research in Journal of the Taiwan Institute of Chemical Engineers in 2021 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Reference of Triacetonamine

Ge, Teng; Jin, Xiaoli; Cao, Jian; Chen, Zhuohua; Xu, Yixue; Xie, Haiquan; Su, Fengyun; Li, Xin; Lan, Qing; Ye, Liqun published their research in Journal of the Taiwan Institute of Chemical Engineers on December 31 ,2021. The article was titled 《Giant enhanced photocatalytic H2O2 production over hollow hexagonal prisms carbon nitride》.Reference of Triacetonamine The article contains the following contents:

H2O2, as a green and environmentally friendly oxidant, has been widely used in our daily life and industrial production It is of epoch-making significance to develop highly efficient photocatalysts for producing H2O2. In recent years, g-C3N4 has received much attention due to its high chem. stability, environmental friendliness and suitable energy band structure. However, some shortcomings including the fast recombination of photogenerated electron-hole pairs and small sp. surface area in traditional 2D g-C3N4 seriously impede its photocatalytic performance for the production of H2O2.1D hollow nanostructures possess intriguing physicochem. properties and are adopted to overcome the intrinsic shortcomings of g-C3N4. Herein, g-C3N4 with a hollow hexagonal prism structure (CN-HP) is prepared to produce H2O2. It is characterized by XRD, XPS, SEM, HRTEM, ESR and DRS. BET, PL spectra, photocurrent and EIS are used to explain the enhanced photocatalytic performance. Compared with traditional 2D g-C3N4, the sp. surface area of CN-HP increases to 41.513 m2/g, providing more active sites. Meanwhile, its hollow tubular structure can enhance the migration of photogenerated electrons to the catalyst surface, and electrons with a longer lifetime can participate in photocatalytic reactions to achieve high efficiency. The yield of H2O2 production can up to 4.08 μmol over CN-HP in 40 min, which is about 7 times higher than that of traditional 2D g-C3N4, and the apparent quantum efficiency (AQE) of H2O2 production at 420 nm is 2.41%. This research provides a valuable reference for the development of green materials for efficient photocatalytic production of H2O2. In addition to this study using Triacetonamine, there are many other studies that have used Triacetonamine(cas: 826-36-8Reference of Triacetonamine) was used in this study.

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Reference of Triacetonamine

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Liu, Li’s team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2020 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Quality Control of Triacetonamine

Liu, Li; Li, Yuxin; Pang, Yaqian; Lan, Yeqing; Zhou, Lixiang published their research in Chemical Engineering Journal (Amsterdam, Netherlands) on December 1 ,2020. The article was titled 《Activation of peroxymonosulfate with CuCo2O4@kaolin for efficient degradation of phenacetin》.Quality Control of Triacetonamine The article contains the following contents:

CuCo2O4@kaolin was successfully synthesized by a sol-gel method and used as a heterogeneous catalyst to activate peroxymonosulfate (PMS) for the degradation of phenacetin (PNT). The results demonstrated that 10 mg/L PNT was completely decomposed by 1 mM PMS activated with 0.1 g/L CuCo2O4@kaolin within 15 min at initial pH 7. CuCo2O4@kaolin exhibited the best excellent catalytic performance among the tested catalysts, and the pseudo-first-order rate constants of PNT degradation were CuCo2O4@kaolin (0.40 min-1) > CuCo2O4 (0.22 min-1) > Co3O4@kaolin (0.10 min-1) > CuO@kaolin (0.08 min-1) > kaolin (0.02 min-1). CuCo2O4@kaolin also possessed superior stability, and the degradation efficiency of PNT declined from 100% in the first round to 80% in the fourth round. Nevertheless, a simple calcinating treatment (20 min) after the third round could restore its catalytic activity substantially and 95% removal of PNT was realized, 15% higher compared to without treatment. ·OH, SO4·-, and 1O2 were the reactive oxygen species driving the PNT degradation Based on the results mentioned above, characterizations of CuCo2O4@kaolin, and intermediates of PNT degradation, the possible pathways and underlying mechanisms of the PNT degradation in the CuCo2O4@kaolin/PMS system were deduced. CuCo2O4@kaolin/PMS had a universal degradation potential toward various organic pollutants, and the degradation efficiencies of sulfisoxazole, p-nitrophenol, chloramphenicol, and 2,4,6-Trichlorophenol reached 95-100% within 5-45 min. Thus, this work provides a novel and efficient PMS activator through an eco-friendly synthetic route, and it may be put into practice to degrade organic matter in wastewater.Triacetonamine(cas: 826-36-8Quality Control of Triacetonamine) was used in this study.

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Quality Control of Triacetonamine

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ishag, Abd Elaziz Sulieman Ahmed’s team published research in Environmental Earth Sciences in 2019 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Application In Synthesis of Triacetonamine

Ishag, Abd Elaziz Sulieman Ahmed; Abdelbagi, Azhari Omer; Hammad, Ahmed Mohammed Ali; Elsheikh, Elsiddig Ahmed Elmustafa; Hur, Jang-Hyun published an article on February 28 ,2019. The article was titled 《Photodegradation of chlorpyrifos, malathion, and dimethoate by sunlight in the Sudan》, and you may find the article in Environmental Earth Sciences.Application In Synthesis of Triacetonamine The information in the text is summarized as follows:

The potential of sunlight photolysis in remediation of pesticide-polluted soils in Sudan was studied. Chlorpyrifos, malathion and dimethoate, common pollutants, were exposed to sunlight over glass and soil surfaces with periodic samples drawn for GC and GC-MS anal. Photo-degradation followed a biphasic model. Alpha half-lives of direct photolysis over glass surface range between 1.99 and 9.36 days while the range in soil surfaces is 1.88-10.77 days. Resp. values for indirect photolysis with βcarotene are 0.96-2.40 days whereas for benzophenone are 0.38-2.37 days (not including malathion as starting material was completely lost after 3 days). Values for soil β-carotene sensitized photolysis are 0.85-4.02 days while resp. values for soil benzophenone sensitized photolysis are 0.88-3.74 days. Metrol. factors did not have a significant impact on photolysis rates. No photoproducts detected in direct photolysis. However, many photoproducts were detected on the indirect sets. Photo-degradation efficiency can be ordered as; benzophenone > β-carotene > direct exposure. In the experiment, the researchers used many compounds, for example, Triacetonamine(cas: 826-36-8Application In Synthesis of Triacetonamine)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Application In Synthesis of Triacetonamine

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Tanaka, Susumu’s team published research in Macromolecules (Washington, DC, United States) in 2020 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Synthetic Route of C9H17NO

Synthetic Route of C9H17NOOn March 24, 2020, Tanaka, Susumu; Enoki, Toshiaki; Imoto, Hiroaki; Ooyama, Yousuke; Ohshita, Joji; Kato, Takuji; Naka, Kensuke published an article in Macromolecules (Washington, DC, United States). The article was 《Highly Efficient Singlet Oxygen Generation and High Oxidation Resistance Enhanced by Arsole-Polymer-Based Photosensitizer: Application as a Recyclable Photooxidation Catalyst》. The article mentions the following:

Photosensitizers have attracted considerable attention in various fields such as organic synthesis and medical care. For the development of high-performance photosensitizers, highly efficient and persistent singlet oxygen generators (1O2) having a high oxidation tolerance are strongly required. This study presents a detailed investigation of dithieno[3,2-b:2′,3′-d]arsole-fluorene copolymer for its 1O2 generation ability and application as a photooxidation catalyst in vital organic reactions. Photoirradiation of an air-saturated solution of the polymer generates 1O2, which was detected by 1O2 scavengers such as dihydronaphthoquinone and diphenylisobenzofuran. The polymer photosensitizer was completely stable in the presence of the strong oxidant 1O2. The photosensitizer showed the highest quantum yield of 1O2 generation (Φ = 0.54) in single-component main-chain type π-conjugated polymers. The quantum yield of the arsenic-free analog of the polymer-bithiophene-fluorene copolymer-was significantly lower (Φ = 0.14), suggesting that the heavy-atom effect of arsenic can improve the efficiency of intersystem crossing (ISC) from the singlet excited state to the triplet excited state of the photosensitizer. In addition, when utilized as a recyclable photocatalyst for the oxidation reaction, the photosensitizer exhibited excellent oxidation resistance without losing its recognizable catalytic activity. Finally, we demonstrated the release of 1O2 into the air by a film of the present polymer. Persistent 1O2 generation was observed on film irradiation without polymer decomposition These results suggested that the polymer exhibited excellent oxidation resistance in solution as well as in the solid state. The present mol. design concept of the photosensitizer using the main group element can facilitate the development of further functional optical materials. In the experimental materials used by the author, we found Triacetonamine(cas: 826-36-8Synthetic Route of C9H17NO)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Synthetic Route of C9H17NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Vastyl, Michal’s team published research in Journal of Environmental Chemical Engineering in 2022 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Quality Control of Triacetonamine

Vastyl, Michal; Jankovska, Zuzana; Cruz, Gerardo Juan Francisco; Matejova, Lenka published an article on February 28 ,2022. The article was titled 《A case study on microwave pyrolysis of waste tyres and cocoa pod husk; effect on quantity and quality of utilizable products》, and you may find the article in Journal of Environmental Chemical Engineering.Quality Control of Triacetonamine The information in the text is summarized as follows:

Disposal of huge amounts of diverse wastes for reduced costs accompanied with gaining of energy and valuable chems. is an eager topic in waste-to-energy and fuel business. Microwave pyrolysis is a thermochem. route providing such benefits. Waste scrap tyres (ST) and cocoa pod husk (CPH) as polymer and biomass representatives were pyrolyzed in microwave reactor at 440 W power for 30 min. Quantity and quality of pyrolysis products (gas, oil, and carbon black) were investigated. It was revealed, while set microwave pyrolysis conditions are sufficient for maximum decomposition of ST to pyrolysis products, it is necessary to optimize them for CPH. The gas produced by microwave pyrolysis of ST contains more H2 and CH4 than from conventional pyrolysis, thus, microwave pyrolysis is an effective tool for production of a fuel gas. The oil obtained by ST microwave pyrolysis is a complex mixture of mostly nonpolar aromatic compounds (toluene, benzene, limonene, styrene, o-xylene), while the oil obtained by CPH microwave pyrolysis contains mainly p-cresol, phenol and its derivatives The ST-derived carbon black shows a well-established large-volume mesoporous-macroporous structure. The CPH-derived carbon black is a low-volume macroporous material with very well-developed microporosity. A higher gross calorific value of microwave ST-derived carbon black in comparison to conventionally prepared one is caused by its higher graphitization rate. Since the surface of ST-derived carbon black is more polar than CPH-derived one and with respect to chem. purity, it could be more suitable adsorbent for polar volatile organic compounds from gaseous emissions. It is necessary to develop a microporosity in ST-derived carbon black. In addition to this study using Triacetonamine, there are many other studies that have used Triacetonamine(cas: 826-36-8Quality Control of Triacetonamine) was used in this study.

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Quality Control of Triacetonamine

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zuo, Shiyu’s team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2022 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Synthetic Route of C9H17NO

Zuo, Shiyu; Guan, Zeyu; Zhang, Yiming; Yang, Fan; Li, Xiaohu; Li, Dongya published their research in Chemical Engineering Journal (Amsterdam, Netherlands) on December 15 ,2022. The article was titled 《Bidentate binuclear coordination configuration for peroxymonosulfate catalytic regulation through incorporation of CuFeOx to iron-based metal organic frameworks》.Synthetic Route of C9H17NO The article contains the following contents:

The scheme of coordination bridge modification provides a new vision for regulating the catalytic pathway, but how to change the surface coordination of peroxymonosulfate (PMS), thereby affecting the catalytic mechanism of PMS, is still an unknown field. In this, we found that MIL-101(Fe) is expected to control the surface catalytic pathway via the bidentate binuclear coordination configuration, thereby realizing the rapid oxidative detoxification of toxic organic pollutants and CO2 conversion. Introducing Cu on the surface of MIL-101(Fe) to change the surface chem. environment (MIL-101(Fe)/CuFeOx) can shift the catalytic pathway, thereby promoting a 14.5-fold improvement in Bisphenol A (BPA) oxidation kinetics (from 0.00697 min-1 to 0.101 min-1). Characterization, experiments, and d. functional theory (DFT) results show that Cu in the vicinity of Fe can tune the electronic structure and properties of Fe-O-Cu, thereby enhancing the electron transfer rate at the active center, facilitating electronic transitions and PMS adsorption. More importantly, shifting the binding configuration of PMS from monodentate mononuclear coordination on a single Fe center to bidentate binuclear coordination on Fe/Cu centers, shorter distance coordination structures and O-O pulling of PMS. The effect promoted PMS cleavage to generate more ROS and changed the catalytic pathway from the radical pathway to the 1O2 and high-valent metal species pathway. The free radical/non-radical pathway co-mediated by 1O2, high-valent metal species, ·OH and SO·-4 can effectively reduce the biotoxicity of toxic organic pollutants, and can utilize alkali environment captures CO2 as a stable carbonate for environmental use. This study provides a strategy for manipulating the catalytic pathway through coordination configuration and a feasible idea for CO2 conversion in wastewater treatment. The experimental part of the paper was very detailed, including the reaction process of Triacetonamine(cas: 826-36-8Synthetic Route of C9H17NO)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Synthetic Route of C9H17NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ma, Wenjie’s team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2019 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Safety of Triacetonamine

Ma, Wenjie; Wang, Na; Du, Yunchen; Tong, Tianze; Zhang, Leijiang; Andrew Lin, Kun-Yi; Han, Xijiang published an article on January 15 ,2019. The article was titled 《One-step synthesis of novel Fe3C@nitrogen-doped carbon nanotubes/graphene nanosheets for catalytic degradation of Bisphenol A in the presence of peroxymonosulfate》, and you may find the article in Chemical Engineering Journal (Amsterdam, Netherlands).Safety of Triacetonamine The information in the text is summarized as follows:

Developing novel carbocatalysts with available strategies for peroxymonosulfate (PMS) activation has become a popular topic in environmental remediation and protection fields. Herein, using com. K4Fe(CN)6 as the precursor, Fe3C@nitrogen-doped carbon nanotubes/graphene nanosheets (Fe3C@NCNTs/GNS) is synthesized by a direct high-temperature pyrolysis. Characterization results prove that Fe3C@NCNTs/GNS has a relatively high graphitization degree and rich nitrogen doping content, which endow it with excellent catalytic efficiency in PMS activation for powerful removal of Bisphenol A (BPA). Influences of catalyst/oxidant dosages, some inorganic anions, humic acid, and practical sewages are investigated in detail. For mechanism studies, it is found that tert-Bu alc. (TBA)/methanol fails to inhibit BPA degradation, and the primary reactive oxidative species (ROS) are superoxide radical (O·-2) and singlet oxygen (1O2). Discussion on the origin of 1O2 confirms that moderate modification of N atoms in graphitic carbon frameworks plays an essential role in inducing the non-radical mechanism. This work will provide new insights for the preparation of high-performance carbocatalysts in PMS activation and exploring critical roles of N-doping during non-radical processes. After reading the article, we found that the author used Triacetonamine(cas: 826-36-8Safety of Triacetonamine)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Safety of Triacetonamine

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yu, Jiaxin’s team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2021 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Synthetic Route of C9H17NO

Synthetic Route of C9H17NOOn October 1, 2021 ,《Highly-efficient and stable MgCo2O4 spinel for bisphenol a removal by activating peroxymonosulfate via radical and non-radical pathways》 was published in Chemical Engineering Journal (Amsterdam, Netherlands). The article was written by Yu, Jiaxin; Qiu, Wei; Xu, Haodan; Lu, Xiaohui; Ma, Jun; Lu, Dongwei. The article contains the following contents:

Nowadays, the limited catalytic efficiency, secondary pollution of metal leaching and stability decrease during reuse bring challenges to practical application of heterogeneous catalysts in sulfate radical-based advanced oxidation processes. Herein, MgCo2O4 spinel was synthesized through hydrothermal method and tested for its catalytic performance of activating PMS by using bisphenol A (BPA) as the target pollutant. MgCo2O4/PMS system can degrade 99.6% BPA efficiently at pH 7.2 within 10 min. The morphol. and physicochem. properties of MgCo2O4 were characterized by SEM (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Unlike conventional PMS activation, radical and non-radical pathways were identified through utilizing XPS, ESR (EPR), and radical quenching experiments Tetrahedral Mg2+ might make MgCo2O4 more stable and promote the Co2+/Co3+ redox, which dominated the catalytic ability of MgCo2O4. MgCo2O4 spinel is efficient, stable, low-cost, and simple to synthesize, leading to BPA degradation via both radical and non-radical pathways. This research would extend the mechanism and potential application of spinel catalysis in water treatment. After reading the article, we found that the author used Triacetonamine(cas: 826-36-8Synthetic Route of C9H17NO)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Synthetic Route of C9H17NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem