Dai, Xi-Jie’s team published research in Journal of the American Chemical Society in 2016 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Computed Properties of C7H15NO

In 2016,Dai, Xi-Jie; Li, Chao-Jun published 《En Route to a Practical Primary Alcohol Deoxygenation》.Journal of the American Chemical Society published the findings.Computed Properties of C7H15NO The information in the text is summarized as follows:

A long-standing scientific challenge in the field of alc. deoxygenation has been direct catalytic sp3 C-O defunctionalization with high selectivity and efficiency, in the presence of other functionalities, such as free hydroxyl groups and amines widely present in biol. mols. Previously, the selectivity issue had been only addressed by classic multistep deoxygenation strategies with stoichiometric reagents. Herein, we propose a catalytic late-transition-metal-catalyzed redox design, on the basis of dehydrogenation/Wolff-Kishner (WK) reduction, to simultaneously tackle the challenges regarding step economy and selectivity. The early development of our hypothesis focuses on an iridium-catalyzed process efficient mainly with activated alcs., which dictates harsh reaction conditions and thus limits its synthetic utility. Later, a significant advancement has been made on aliphatic primary alc. deoxygenation by employing a ruthenium complex, with good functional group tolerance and exclusive selectivity under practical reaction conditions. Its synthetic utility is further illustrated by excellent efficiency as well as complete chemo- and regioselectivity in both simple and complex mol. settings. Mechanistic discussion is also included with exptl. supports. Overall, our current method successfully addresses the aforementioned challenges in the pertinent field, providing a practical redox-based approach to the direct sp3 C-O defunctionalization of aliphatic primary alcs.2-(Piperidin-4-yl)ethanol(cas: 622-26-4Computed Properties of C7H15NO) was used in this study.

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Computed Properties of C7H15NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Kumar, Sunil’s team published research in European Journal of Medicinal Chemistry in 2015 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.HPLC of Formula: 622-26-4

In 2015,Kumar, Sunil; Pathania, Anoop S.; Satti, Naresh K.; Dutt, Parbhu; Sharma, Neha; Mallik, Fayaz A.; Ali, Asif published 《Synthetic modification of hydroxychavicol by Mannich reaction and alkyne-azide cycloaddition derivatives depicting cytotoxic potential》.European Journal of Medicinal Chemistry published the findings.HPLC of Formula: 622-26-4 The information in the text is summarized as follows:

Here we report the design, synthesis and lead optimization of hydroxychavicol (I) a high yielding metabolite ubiquitously present in the Piper betel leaves with the significant cytotoxic activity. This is the first report to describe the synthetic strategies of two distinct series of hydroxychavicol by Mannich reaction and alkyne-azide cycloaddition Furthermore, all the synthesized derivatives along with parent compound were evaluated for their in-vitro cytotoxic and antiproliferative potential in several distinct cancers cell lines. Among all, the Mannich reaction derived mols., e.g., II, displayed more potent cytotoxic activities with IC50 value in a range from 3 to 9 μM, which were 7-10 fold more potent than I against five human cancer cell lines viz. HL-60, Mia PaCa-2, MCF-7, HEP G2 and SK-N-SH. Our results describe an efficient synthetic approach used to evaluate the structure activity relationship of I and its derivative in search of potential new anticancer agents. After reading the article, we found that the author used 2-(Piperidin-4-yl)ethanol(cas: 622-26-4HPLC of Formula: 622-26-4)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.HPLC of Formula: 622-26-4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Uguzdogan, Erdal’s team published research in Journal of Applied Polymer Science in 2013 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKRecommanded Product: 622-26-4

Recommanded Product: 622-26-4In 2013 ,《Investigation of temperature sensitivity behaviors of water soluble polyacrylamides》 was published in Journal of Applied Polymer Science. The article was written by Uguzdogan, Erdal; Denkbas, Emir Baki; Kabasakal, Osman Sermet. The article contains the following contents:

Temperature sensitive polymers with a lower critical solution temperature (LCST) are used in a variety of industries such as the pharmaceutical, cosmetic, food, and paint. These polymers are generally of the poly(N-alkylacrylamide) type, of which poly(N-isopropylacrylamide) (PNIPA) is the most commonly used. More novel poly(N-alkylacrylamide)s have also been the subject of much attention recently. In this study, N-alkylacrylamides containing different alkyl groups were synthesized by nucleophilic substitution reactions of various amines with acryloyl chloride. They were polymerized using the solution polymerization method, and the temperature sensitivities of the polymers were investigated. For this purpose, three monomers, N,N-diethylacrylamide, N-cyclopropylacrylamide, and 4-piperidineethanolacrylamide, were synthesized using diethylamine, cyclopropylamine, and 4-piperidineethanol, as the amines, resp. The obtained polymers, poly(N,N-diethylacrylamide) (PDEA), poly(N-cyclopropylacrylamide) (PCPA), and poly(4-piperidineethanolacrylamide) (PPEA), were found to be thermo-responsive, particularly PPEA is a potential novel material that can be utilized as an alternative to the common temperature sensitive polymers. The effects of several conditions on the LCST and the critical flocculation temperature (CFT) of the polymers were also investigated. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2012.2-(Piperidin-4-yl)ethanol(cas: 622-26-4Recommanded Product: 622-26-4) was used in this study.

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKRecommanded Product: 622-26-4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Bai, Zhongjie’s team published research in European Journal of Medicinal Chemistry in 2018 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Reference of 2-(Piperidin-4-yl)ethanol

In 2018,European Journal of Medicinal Chemistry included an article by Bai, Zhongjie; Zhang, Jinlong; Zhang, Qiuping; Zhang, Taofeng; Li, Jili; Zhao, Quanyi; Wang, Zhen; He, Dian; Cheng, Jie; Zhang, Jingke; Liu, Bin. Reference of 2-(Piperidin-4-yl)ethanol. The article was titled 《Synthesis, toxicities and bio-activities of manganese complexes with CO and H2S dual donors》. The information in the text is summarized as follows:

A series of H2S-CO dual-donors [Mn(CO)4CS2NR1R2] was synthesized, and evaluated from toxicity and bioactivity. The CO-H2S measuring test showed all the complexes not only released CO, but released H2S. The resulting data of cytotoxicity showed all the complexes had activities against the cell proliferation; among them, complexes 1, 2 and 7 displayed higher activities than the others, and their potencies were close to cis-platinum (DDP); whereas the precursors A1-A22 had almost no activities against all five tumor cell lines and W138 cell line proliferation. It is worth noting that complex 1 displayed the highest activity to MCF-7, complex 2 displayed the highest activity to HePG2, and complex 7 showed selectivity inhibition to both A549 and HeLa. The developmental toxicities of the complex were assessed using zebrafish embryos. The results showed complexes 1 and 2 had effect on the mortality and hatching rate of zebrafish embryos in dose-dependent manner. They caused zebrafish malformations when they were over 10 μM. Meanwhile, they displayed dose-dependent toxicities to larval zebrafish. In the test of bio-activities, complexes 1 and 2 had strong anti-inflammatory activities; they not only down-regulated the expression levels of iNOS and TNF-α, up-regulated the expression of HO-1 and IL-10, but also up-regulated COX-2 levels. In contrast, the precursor compound (A1 or A2) displayed lower anti-inflammatory activity than the corresponding complex, which suggests both the CO and H2S from the complex took synergistic effects in the process of anti-inflammation. In addition, the complex showed antihypertensive effect and myocardial protection. This effect also possibly resulted from this synergistic effect. All these suggest the complexes have potential to be candidate medicines. After reading the article, we found that the author used 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Reference of 2-(Piperidin-4-yl)ethanol)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Reference of 2-(Piperidin-4-yl)ethanol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Movsisyan, Marine’s team published research in European Journal of Organic Chemistry in 2019 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKSafety of 2-(Piperidin-4-yl)ethanol

The author of 《Continuous-Flow Synthesis of Phenothiazine Antipsychotics: A Feasibility Study》 were Movsisyan, Marine; De Coen, Laurens M.; Heugebaert, Thomas S. A.; Verlee, Arno; Roman, Bart I.; Stevens, Christian V.. And the article was published in European Journal of Organic Chemistry in 2019. Safety of 2-(Piperidin-4-yl)ethanol The author mentioned the following in the article:

The continuous flow synthesis of a model phenothiazine I antipsychotic was reported, using 3-chloropropionyl chloride as a central building block. The basic phenothiazine-derived scaffold was (atom)-efficiently and mildly synthesized with the aim to present continuous flow technol. as a contributor to fast and efficient synthesis of challenging APIs, which were experiencing supply disruptions and global shortages. The experimental process involved the reaction of 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Safety of 2-(Piperidin-4-yl)ethanol)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKSafety of 2-(Piperidin-4-yl)ethanol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Park, Jung Sang’s team published research in European Journal of Medicinal Chemistry in 2016 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKFormula: C7H15NO

In 2016,Park, Jung Sang; Im, Weonbin; Choi, Sunghak; Park, Sook Jin; Jung, Jun Min; Baek, Ki Seon; Son, Han Pyo; Sharma, Satyasheel; Kim, In Su; Jung, Young Hoon published 《Discovery and SAR of N-(1-((substituted piperidin-4-yl)methyl)-3-methoxypiperidin-4-yl)-2-methoxybenzamide derivatives: 5-Hydroxytryptamine receptor 4 agonist as a potent prokinetic agent》.European Journal of Medicinal Chemistry published the findings.Formula: C7H15NO The information in the text is summarized as follows:

A series of novel benzamide derivatives altering the 4-fluorophenylalkyl moiety in cisapride, was synthesized as 5-HT4 receptor agonists; and SAR of these analogs was examined on in vitro and in vivo prokinetic activities. These compounds were synthesized for high 5-HT4 receptor binding affinities and low hERG affinities. Several types of analogs were obtained and screened for 5-HT4 binding, hERG blocking, agonism and gastric emptying assessment. Among the analogs, compound I showed promising results compared with the other analogs with respect to gastric emptying rates in rats and can be a clin. candidate for the development of a potent prokinetic agent to treat GI disorders. In the experiment, the researchers used many compounds, for example, 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Formula: C7H15NO)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKFormula: C7H15NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Gao, Mingzhang’s team published research in Bioorganic & Medicinal Chemistry Letters in 2014 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.COA of Formula: C7H15NO

In 2014,Gao, Mingzhang; Wang, Min; Zheng, Qi-Huang published 《Concise and high-yield synthesis of T808 and T808P for radiosynthesis of [18F]-T808, a PET tau tracer for Alzheimer’s disease》.Bioorganic & Medicinal Chemistry Letters published the findings.COA of Formula: C7H15NO The information in the text is summarized as follows:

The authentic standard T808 and its corresponding mesylate precursor T808P were synthesized in six steps using Et vinyl ether and trichloroacetyl chloride as starting materials. The overall chem. yields of T808 and T808P were 35% and 52%, resp. [18F]-T808 was synthesized from T808P by the nucleophilic substitution with K[18F]F/Kryptofix 2.2.2 and isolated by HPLC combined with solid-phase extraction (SPE) purification in 35-45% radiochem. yield with 37-370 GBq/μmol specific activity at end of bombardment (EOB). In addition to this study using 2-(Piperidin-4-yl)ethanol, there are many other studies that have used 2-(Piperidin-4-yl)ethanol(cas: 622-26-4COA of Formula: C7H15NO) was used in this study.

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.COA of Formula: C7H15NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Akita, Hidetaka’s team published research in ACS Biomaterials Science & Engineering in 2015 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKRecommanded Product: 2-(Piperidin-4-yl)ethanol

《Molecular Tuning of a Vitamin E-Scaffold pH-Sensitive and Reductive Cleavable Lipid-like Material for Accelerated in Vivo Hepatic siRNA Delivery》 was written by Akita, Hidetaka; Noguchi, Yuki; Hatakeyama, Hiroto; Sato, Yusuke; Tange, Kota; Nakai, Yuta; Harashima, Hideyoshi. Recommanded Product: 2-(Piperidin-4-yl)ethanolThis research focused onvitamin E pH reductive cleavable lipid liver siRNA targeting; drug delivery system; liposomal nanoparticle; liver; siRNA. The article conveys some information:

A lipid nanoparticle (LNP) composed of a series of SS-cleavable and pH-activated lipid-like materials (ssPalm) was previously developed as a platform of a gene delivery system. A tertiary amine and disulfide bonding were employed to destabilize the endosomal membrane and for intracellular collapse. We report herein on the development of a hepatocyte-targeting siRNA carrier by the mol. tuning of the hydrophobic scaffold, and tertiary amine structures. The gene knockdown activity against a hepatocyte-specific marker (factor VII: FVII) was improved when a more fat-soluble vitamin (vitamin E) was employed as a hydrophobic scaffold. Moreover, to allow the tertiary amines to accept protons by sensing a slight change in endosomal acidification, its structural flexibility was minimized by fixing it in a piperidine structure, and the distance between the surface of the particle to the ternary amine was increased. As a result, the pKa value was increased to the approx. 6.18 depending on its distance, while the pKa reached plateau when the tertiary amine was linked by an excess number of linear carbon chains. The pH-dependent membrane destabilization activity, as assessed by a hemolysis assay, was increased in parallel with the pKa value. Moreover, the gene knockdown activity was improved in parallel with hemolytic activity. Finally, further optimization of the lipid/siRNA ratio, and the use of chem. (2′-fluoro) modified siRNA synergistically improved the gene knockdown efficacy to an ED (ED50) of 0.035 mg/kg. The developed ssPalm represents a promising platform for use as a hepatocyte-targeting siRNA carrier. The results came from multiple reactions, including the reaction of 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Recommanded Product: 2-(Piperidin-4-yl)ethanol)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKRecommanded Product: 2-(Piperidin-4-yl)ethanol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Tomita, Naoki’s team published research in Bioorganic & Medicinal Chemistry Letters in 2013 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKCOA of Formula: C7H15NO

COA of Formula: C7H15NOIn 2013 ,《Structure-based discovery of cellular-active allosteric inhibitors of FAK》 appeared in Bioorganic & Medicinal Chemistry Letters. The author of the article were Tomita, Naoki; Hayashi, Yoko; Suzuki, Shinkichi; Oomori, Yoshimasa; Aramaki, Yoshio; Matsushita, Yoshihiro; Iwatani, Misa; Iwata, Hidehisa; Okabe, Atsutoshi; Awazu, Yoshiko; Isono, Osamu; Skene, Robert J.; Hosfield, David J.; Miki, Hiroshi; Kawamoto, Tomohiro; Hori, Akira; Baba, Atsuo. The article conveys some information:

In order to develop potent and selective focal adhesion kinase (FAK) inhibitors, synthetic studies on pyrazolo[4,3-c][2,1]benzothiazines targeted for the FAK allosteric site were carried out. Based on the X-ray structural anal. of the co-crystal of the lead compound, 8-(4-ethylphenyl)-5-methyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazine 4,4-dioxide 1 with FAK, we designed and prepared 1,5-dimethyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazin derivatives which selectively inhibited kinase activity of FAK without affecting seven other kinases. The optimized compound, N-(4-tert-butylbenzyl)-1,5-dimethyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazin-8-amine 4,4-dioxide 30 possessed significant FAK kinase inhibitory activities both in cell-free (IC50 = 0.64 μM) and in cellular assays (IC50 = 7.1 μM). These results clearly demonstrated a potential of FAK allosteric inhibitors as antitumor agents. The experimental part of the paper was very detailed, including the reaction process of 2-(Piperidin-4-yl)ethanol(cas: 622-26-4COA of Formula: C7H15NO)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKCOA of Formula: C7H15NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Rong, Rui-Xue’s team published research in Bioorganic & Medicinal Chemistry Letters in 2018 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Quality Control of 2-(Piperidin-4-yl)ethanol

In 2018,Bioorganic & Medicinal Chemistry Letters included an article by Rong, Rui-Xue; Wang, Shan-Shan; Liu, Xuan; Li, Ren-Feng; Wang, Ke-Rang; Cao, Zhi-Ran; Li, Xiao-Liu. Quality Control of 2-(Piperidin-4-yl)ethanol. The article was titled 《Lysosomes-targeting imaging and anticancer properties of novel bis-naphthalimide derivatives》. The information in the text is summarized as follows:

A series of novel bridged bis-naphthalimide derivatives containing saturated nitrogenous heterocycles were designed and synthesized, their cytotoxic activities against Hela, MCF-7, A549 and MGC-803 cells were investigated. Compounds NI1-NI4 (I.4HCl – IV.4HCl, resp.) modified with piperidine and piperazine exhibited good and selective cytotoxic activity, for instance, compounds NI1 (IC50 2.89 and 0.60 μM) and NI4 (2.73 and 1.60 μM) showed potent cytotoxic activity against Hela cells and MGC-803 cells, resp., better than the control drug (Amonafide). However, compounds conjugated with pyrrole derivatives showed weak cytotoxic activities against the all tested cell lines. Furthermore, their DNA binding properties, fluorescence imaging and cell cycle were investigated. Interestingly, compounds NI1 and NI4 showed fluorescence enhancement because of the strong binding with Ct-DNA, and exhibited fluorescence imaging with Hela cells on the lysosomes. In the part of experimental materials, we found many familiar compounds, such as 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Quality Control of 2-(Piperidin-4-yl)ethanol)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Quality Control of 2-(Piperidin-4-yl)ethanol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem