Kim, Se-Ho’s team published research in Journal of Medicinal Chemistry in 2012 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKRecommanded Product: 2-(Piperidin-4-yl)ethanol

Recommanded Product: 2-(Piperidin-4-yl)ethanolIn 2012 ,《Discovery of (2S)-1-[4-(2-{6-Amino-8-[(6-bromo-1,3-benzodioxol-5-yl)sulfanyl]-9H-purin-9-yl}ethyl)piperidin-1-yl]-2-hydroxypropan-1-one (MPC-3100), a Purine-Based Hsp90 Inhibitor》 appeared in Journal of Medicinal Chemistry. The author of the article were Kim, Se-Ho; Bajji, Ashok; Tangallapally, Rajendra; Markovitz, Benjamin; Trovato, Richard; Shenderovich, Mark; Baichwal, Vijay; Bartel, Paul; Cimbora, Daniel; McKinnon, Rena; Robinson, Rosann; Papac, Damon; Wettstein, Daniel; Carlson, Robert; Yager, Kraig M.. The article conveys some information:

Modulation of Hsp90 (heat shock protein 90) function has been recognized as an attractive approach for cancer treatment, since many cancer cells depend on Hsp90 to maintain cellular homeostasis. This has spurred the search for small-mol. Hsp90 inhibitors. Here we describe our lead optimization studies centered on the purine-based Hsp90 inhibitor 28a (I; R = CHO) containing a piperidine moiety at the purine N9 position. In this study, key SAR was established for the piperidine N-substituent and for the congeners of the 1,3-benzodioxole at C8. These efforts led to the identification of orally bioavailable 28g [I; R = (S)-2-hydroxypropanoyl] that exhibits good in vitro profiles and a characteristic mol. biomarker signature of Hsp90 inhibition both in vitro and in vivo. Favorable pharmacokinetic properties along with significant antitumor effects in multiple human cancer xenograft models led to the selection of 28g (MPC-3100) as a clin. candidate. The experimental part of the paper was very detailed, including the reaction process of 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Recommanded Product: 2-(Piperidin-4-yl)ethanol)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKRecommanded Product: 2-(Piperidin-4-yl)ethanol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Feng, Xiu E.’s team published research in Medicinal Chemistry Research in 2019 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKSDS of cas: 622-26-4

SDS of cas: 622-26-4In 2019 ,《Fluorophenols bearing nitrogenated heterocycle moieties, a class of novel Keap1-Nrf2 protein-protein interaction inhibitors: synthesis, antioxidant stress screening and molecular docking》 appeared in Medicinal Chemistry Research. The author of the article were Feng, Xiu E.; Kong, De Peng; Ban, Shu Rong; Ge, Rui; Li, Qing Shan. The article conveys some information:

In the present study, we introduced the nitrogenated heterocycles and fluorine atoms into the 2,5′-dibromo-4,5,2′-trihydroxyl diphenylmethanone (LM49), a bromophenol analog previously reported for its strong antioxidant ability involving in the Keap1-Nrf2 pathway. Twenty-seven fluorophenols 6a-6g, 8a-8k, 10a-10g, and 12a-12b were prepared, evaluated for their antioxidant activity in EA.hy926 cells, and investigated their interacted approach and probable mode of action with key protein Keap1 by mol. docking. Fluorophenols 6f, 8d, 8f, 8h, and 8i with EC50 values ranging from 0.82 to 6.71 μM were found to be more active compared with the standard control quercetin (EC50 = 18 μM). Among them, compound 8h with an EC50 value of 0.82 μM showed the identical activity to lead compound LM49 (EC50 = 0.7 μM). Moreover, the preferable water solubility and forming salt possibility of 8h contribute to its druggability. Further mol. docking of the optimal compound 8h with key protein Keap1 indicated that 8h stably bonded to the receptor protein by the formation of hydrogen bonds, the conjugated six-membered ring was close to the key residue Arg-415 attached to the Nrf2 on Keap1-Kelch, affecting its properties, and the change leaded to the dissociation of Nrf2 from the junction with Keap1-Kelch into the nucleus exerting its antioxidant protective effect. This study introduced a class of fluorophenols containing nitrogenated heterocycles for the development of novel Keap1-Nrf2 protein-protein interaction (PPI) inhibitors. Keap1-Kelch is suggested the most potential target protein for such class of halophenols. After reading the article, we found that the author used 2-(Piperidin-4-yl)ethanol(cas: 622-26-4SDS of cas: 622-26-4)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKSDS of cas: 622-26-4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yang, Chaofu’s team published research in Journal of Molecular Structure in 2022 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Category: piperidines

In 2022,Yang, Chaofu; Sun, Xianyu; Li, Zhan; Cheng, Yunyun; Lei, Yu; Lu, Liang; Liu, Xuan; Zhuang, Xiaomei; Wang, Tao; He, Xinhua published an article in Journal of Molecular Structure. The title of the article was 《The effect of benzenesulfonamide′s side chains on their human carbonic anhydrase I/II inhibitory activities》.Category: piperidines The author mentioned the following in the article:

Benzenesulfonamides are well-known potent carbonic anhydrase inhibitors (CAIs). They are usually composed of benzenesulfonamide heads and hydrophobic side chain tails. However, hydrophobic side chain tails contribute to poor water solubility, which is a major challenge in the development of CAIs. Herein, to elaborate whether benzenesulfonamides with hydrophilic/hydrophobic tails are effective against carbonic anhydrases (CAs), 12 benzenesulfonamides containing hydrophilic tails and 16 benzenesulfonamides containing hydrophobic tails were designed and synthesized. Benzenesulfonamides with hydrophilic tails including 4b, 4c, and 5b and benzenesulfonamides with hydrophobic tails including 2e, 4b, and 4c are potent carbonic anhydrase I/II dual inhibitors whose Ki to CA I and CA II were below 10 nM, and below 50 nM, resp. However, the water solubility of 4b, 4c, and 5b was 52, 148, and 71 mg/100 g of water, resp., which is much better than that of benzenesulfonamides with hydrophobic tails. In a hypoxic mouse model, compounds 4c and 5b extended the survival of mice by 34.46% and 28.23%, resp., compared to the blank control. Treatment with 4c and 5b extended survival better than acetazolamide treatment did (16.86%). Moreover, 5b also has better anti-convulsant effect than AAZ. Mol. docking anal. demonstrated that hydrogen bonds between the oxygen atoms in the hydrophilic tails of 4b, 4c, and 5b and H2O in hCA I and hCA II protein facilitated ligand-receptor binding. Therefore, considering the good water solubility and potent CA I/II inhibition, 4c and 5b are worth exploring as therapeutic options for acute mountain sickness. In conclusion, benzenesulfonamides containing hydrophilic tails could offer innovative opportunities for potent, water-soluble anti-AMS (Acute Mountain Sickness) compounds In addition to this study using 2-(Piperidin-4-yl)ethanol, there are many other studies that have used 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Category: piperidines) was used in this study.

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Category: piperidines

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Demuth, Jiri’s team published research in Chemistry – A European Journal in 2018 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Category: piperidines

In 2018,Demuth, Jiri; Kucera, Radim; Kopecky, Kamil; Havlinova, Zuzana; Libra, Antonin; Novakova, Veronika; Miletin, Miroslav; Zimcik, Petr published 《Efficient synthesis of a wide-range absorbing azaphthalocyanine dark quencher and its application to dual-labeled oligonucleotide probes for quantitative real-time polymerase chain reactions》.Chemistry – A European Journal published the findings.Category: piperidines The information in the text is summarized as follows:

Unsym. dialkylamino-substituted zinc azaphthalocyanine (AzaPc) exhibits unique spectral and photophys. properties for dark quenchers of fluorescence in DNA hybridization probes. The panchromatic light absorption of AzaPc from 300 nm up to at least 700 nm and its lack of fluorescence make it an ideal candidate for a universal dark quencher. To prove this exptl., oligodeoxyribonucleotide probes were labeled at the 3′-end by this AzaPc and at the 5′-end by a fluorophore used in the polymerase chain reaction (PCR)-i.e., fluorescein, CAL Fluor Red 610, and Cy5. AzaPc showed a significantly higher quenching efficiency compared to the com. available dark quenchers (BHQ-1, BHQ-2, BBQ-650) in a developed model of TaqMan PCR assay. The AzaPc-labeled probe proved to also be useful in a practical PCR assay for the quantification of the SLCO2B1 transporter gene expression. The constructed calibration curves indicated linearity in the range from 102 to 107 of target copies. After reading the article, we found that the author used 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Category: piperidines)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Category: piperidines

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhang, Xu’s team published research in Bioorganic & Medicinal Chemistry in 2013 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Recommanded Product: 622-26-4

In 2013,Zhang, Xu; Peng, Ting; Ji, Xun; Li, Jian; Tong, Linjiang; Li, Zeng; Yang, Wei; Xu, Yungen; Li, Mengyuan; Ding, Jian; Jiang, Hualiang; Xie, Hua; Liu, Hong published 《Design, synthesis and biological evaluation of novel 4-anilinoquinazolines with C-6 urea-linked side chains as inhibitors of the epidermal growth factor receptor》.Bioorganic & Medicinal Chemistry published the findings.Recommanded Product: 622-26-4 The information in the text is summarized as follows:

A novel series of anilinoquinazoline compounds with C-6 urea-linked side chains was designed and synthesized as reversible inhibitors of epidermal growth factor receptor (EGFR) based on the structure-activity relationships (SARs) of anilinoquinazoline inhibitors. All compounds demonstrated good inhibition of EGFR wild type (EGFR wt) and inhibited proliferation of A431cell line. Compounds (I) and (II) almost completely blocked the phosphorylation of EGFR in A431 cell line at 0.01 μM. Interestingly, all of the compounds also demonstrated moderate inhibition of EGFR/T790M/L858R. In addition, compounds (III) and (IV) blocked the autophosphorylation of EGFR in NCI-H1975 cells at high concentration (10 μM), and compound 8f was confirmed to be an irreversible inhibitor through the dilution method. Importantly, the compounds with C-6 urea-linked side chains which did not contain Michael acceptors demonstrated moderate to strong irreversible EGFR inhibition. In the experimental materials used by the author, we found 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Recommanded Product: 622-26-4)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Recommanded Product: 622-26-4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Fraser, Craig’s team published research in Journal of Medicinal Chemistry in 2016 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKFormula: C7H15NO

Formula: C7H15NOIn 2016 ,《Rapid Discovery and Structure-Activity Relationships of Pyrazolopyrimidines That Potently Suppress Breast Cancer Cell Growth via SRC Kinase Inhibition with Exceptional Selectivity over ABL Kinase》 appeared in Journal of Medicinal Chemistry. The author of the article were Fraser, Craig; Dawson, John C.; Dowling, Reece; Houston, Douglas R.; Weiss, Jason T.; Munro, Alison F.; Muir, Morwenna; Harrington, Lea; Webster, Scott P.; Frame, Margaret C.; Brunton, Valerie G.; Patton, E. Elizabeth; Carragher, Neil O.; Unciti-Broceta, Asier. The article conveys some information:

Novel pyrazolopyrimidines displaying high potency and selectivity toward SRC family kinases have been developed by combining ligand-based design and phenotypic screening in an iterative manner. Compounds were derived from the promiscuous kinase inhibitor PP1 to search for analogs that could potentially target a broad spectrum of kinases involved in cancer. Phenotypic screening against MCF7 mammary adenocarcinoma cells generated target-agnostic structure-activity relationships that biased subsequent designs toward breast cancer treatment rather than to a particular target. This strategy led to the discovery of two potent antiproliferative leads with phenotypically distinct anticancer mode of actions. Kinase profiling and further optimization resulted in eCF506, the first small mol. with subnanomolar IC50 for SRC that requires 3 orders of magnitude greater concentration to inhibit ABL. eCF506 exhibits excellent water solubility, an optimal DMPK profile and oral bioavailability, halts SRC-associated neuromast migration in zebrafish embryos without inducing life-threatening heart defects, and inhibits SRC phosphorylation in tumor xenografts in mice. In the experimental materials used by the author, we found 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Formula: C7H15NO)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKFormula: C7H15NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wang, Wentian’s team published research in Journal of Medicinal Chemistry in 2019 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKCategory: piperidines

Category: piperidinesIn 2019 ,《Design and Synthesis of TASIN Analogues Specifically Targeting Colorectal Cancer Cell Lines with Mutant Adenomatous Polyposis Coli (APC)》 appeared in Journal of Medicinal Chemistry. The author of the article were Wang, Wentian; Zhang, Lu; Morlock, Lorraine; Williams, Noelle S.; Shay, Jerry W.; De Brabander, Jef K.. The article conveys some information:

Despite advances in targeted anticancer therapies, there are still no small-mol.-based therapies available that specifically target colorectal cancer (CRC) development and progression, the second leading cause of cancer deaths. We previously disclosed the discovery of truncating adenomatous polyposis coli (APC)-selective inhibitor 1 (TASIN-1), a small mol. that specifically targets colorectal cancer cells lines with truncating mutations in the adenomatous polyposis coli (APC) tumor suppressor gene through inhibition of cholesterol biosynthesis. Here, we report a medicinal chem. evaluation of a collection of TASIN analogs and activity against colon cancer cell lines and an isogenic cell line pair reporting on the status of APC-dependent selectivity. A number of potent and selective analogs were identified, including compounds with good metabolic stability and pharmacokinetic properties. The compounds reported herein represent a first-in-class genotype-selective series that specifically target apc mutations present in the majority of CRC patients and serve as a translational platform toward a targeted therapy for colon cancer. The results came from multiple reactions, including the reaction of 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Category: piperidines)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKCategory: piperidines

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Tanaka, Hiroki’s team published research in Advanced Functional Materials in 2020 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Category: piperidines

《Self-Degradable Lipid-Like Materials Based on “”Hydrolysis accelerated by the intra-Particle Enrichment of Reactant (HyPER)”” for Messenger RNA Delivery》 was written by Tanaka, Hiroki; Takahashi, Tatsunari; Konishi, Manami; Takata, Nae; Gomi, Masaki; Shirane, Daiki; Miyama, Ryo; Hagiwara, Shinya; Yamasaki, Yuki; Sakurai, Yu; Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu; Shinsho, Eiji; Nishida, Ruka; Fukuzawa, Kaori; Yonemochi, Etsuo; Okuwaki, Koji; Mochizuki, Yuji; Nakai, Yuta; Tange, Kota; Yoshioka, Hiroki; Tamagawa, Shinya; Akita, Hidetaka. Category: piperidines And the article was included in Advanced Functional Materials in 2020. The article conveys some information:

RNA-based therapeutics are a promising approach for curing intractable diseases by manipulating various cellular functions. For eliciting RNA (i.e., mRNA and siRNA) functions successfully, the RNA in the extracellular space must be protected and it must be delivered to the cytoplasm. In this study, the development of a self-degradable lipid-like material that functions to accelerate the collapse of lipid nanoparticles (LNPs) and the release of RNA into cytoplasm is reported. An oleic acid-scaffold lipid-like material that mounts all of these units (ssPalmO-Phe) shows superior transfection efficiency to nondegradable or conventional materials. The insertion of the aromatic ring is unexpectedly revealed to contribute to the enhancement of endosomal escape. Since the intracellular trafficking is a sequential process that includes cellular uptake, endosomal escape, the release of mRNA, and translation, the improvement in each process synergistically enhances the gene expression. In the experimental materials used by the author, we found 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Category: piperidines)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Category: piperidines

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wang, Ke-Rang’s team published research in Chemical Biology & Drug Design in 2016 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Quality Control of 2-(Piperidin-4-yl)ethanol

In 2016,Wang, Ke-Rang; Qian, Feng; Sun, Qian; Ma, Cui-Lan; Rong, Rui-Xue; Cao, Zhi-Ran; Wang, Xiao-Man; Li, Xiao-Liu published 《Substituent Effects on Cytotoxic Activity, Spectroscopic Property, and DNA Binding Property of Naphthalimide Derivatives》.Chemical Biology & Drug Design published the findings.Quality Control of 2-(Piperidin-4-yl)ethanol The information in the text is summarized as follows:

A series of novel naphthalimide derivatives NI1-5 containing piperazine moieties (N-(2-hydroxyethyl)piperazine and 1-piperazinepropanol) and piperidine moieties (4-piperidinemethanol, 4-hydroxypiperidine and 4-piperidineethanol) have been synthesized and evaluated for their cytotoxic activity, spectroscopic property, and DNA binding behaviors. It was found that substituents at the 4-position remarkably influence the various activities of this series of compound Compounds NI3-5 modified with piperidines exhibited potent cytotoxic activities against Hela, SGC-7901, and A549 cells with the IC50 values from 0.73 μM to 6.80 μM, which are better than NI1-2 functionalized with piperazines. Compounds NI1-2 showed higher binding capacity with Ct-DNA than compounds NI3-5 based on studies of UV-vis, fluorescence and CD spectra. Furthermore, compounds NI3-5, as DNA intercalators, showed fluorescence enhancement upon binding with Ct-DNA. More interestingly, fluorescence imaging studies of compound NI4 with A549 cells showed that the fluorescence predominantly appeared in the cytoplasm. These results provided a potential application of NI3-5 as anticancer therapeutic and cancer cell imaging agents. In the experiment, the researchers used 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Quality Control of 2-(Piperidin-4-yl)ethanol)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Quality Control of 2-(Piperidin-4-yl)ethanol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ding, Chunyong’s team published research in Journal of Medicinal Chemistry in 2018 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKCategory: piperidines

Category: piperidinesIn 2018 ,《Structural Modification of Natural Product Tanshinone I Leading to Discovery of Novel Nitrogen-Enriched Derivatives with Enhanced Anticancer Profile and Improved Drug-like Properties》 was published in Journal of Medicinal Chemistry. The article was written by Ding, Chunyong; Tian, Qianting; Li, Jie; Jiao, Mingkun; Song, Shanshan; Wang, Yingqing; Miao, Zehong; Zhang, Ao. The article contains the following contents:

The clin. development of natural product tanshinone I (1) for cancer therapy is hampered by its weak potency and poor drug-like properties. Herein, a more broad and systemic structural modification on 1 was conducted to generate four series of new tanshinone derivatives Among them, the lactam derivative 22h (4-(3-(diethylamino)propyl)-2-methylfuro[3,2-c]phenanthridine-5,10,11(4H)-trione) demonstrated the most potent antiproliferative activity against KB and drug-resistant KB/VCR cancer cells, which are approx. 13- to 49-fold more potent than 1. Compound 22h possesses significantly improved drug-like properties including aqueous solubility (15.7 mg/mL), metabolic stability of liver microsomes, and PK characters (T1/2 = 2.58 h; F = 21%) when compared to 1. Preliminary mechanism studies showed that 22h significantly induced apoptosis of HCT116 cells, at least partially, through activation of caspase-3/-7. More importantly, administration of 22h at 10 mg/kg significantly suppressed the tumor growth of HCT116 xenograft in vivo without significant loss of body weight of the tested nude mice. The experimental part of the paper was very detailed, including the reaction process of 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Category: piperidines)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKCategory: piperidines

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem