Qiu, Jingying team published research on Chemistry & Biodiversity in 2022 | 5382-16-1

Electric Literature of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Electric Literature of 5382-16-1.

Qiu, Jingying;Zou, Yueting;Liu, Qingchuan;Jiang, Chunyu;Zhou, Qingqing;Li, Shuqiong;Chen, Wang;Li, Zheng;Gu, Xiaoke research published 《 Synthesis and Evaluation of Novel Quinazolinone Derivatives as Potential Anti-HCC Agents》, the research content is summarized as follows. Hepatocellular carcinoma (HCC), a common malignancy worldwide, has a high mortality rate and limited effective therapeutic options. In this work, a series of quinazolinone compounds (6a-t and 7a-i) were synthesized as potential anti-HCC agents. Among them, compound 7b more potently inhibited HepG2, HUH7 and SK-Hep-1 cells proliferation than classical anti-HCC drug sorafenib, indicating its potential anti-HCC effect. Interestingly, 7b could dose-dependently decrease Cyclin D1 and CDK2 levels, and increase p21 protein expression, thus inducing HepG2 cells cycle arrest at G0/G1 phase. In addition, 7b also displayed potent apoptosis-induced effect on HepG2 cells by interfering Hepatocellular carcinoma, Bcl-2 and Bcl-xl proteins expression. Notably, 7b could efficiently block the activity of PI3K pathway by dose-dependently reducing the phosphorylation of PI3K (Y607) and AKT (S473). Moreover, predicted ADME properties indicated that 7b possessed a good pharmacokinetic profile. Collectively, compound 7b might be a promising lead to the development of novel therapeutic agents towards HCC.

Electric Literature of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Punetha, Ankita team published research on RSC Medicinal Chemistry in 2021 | 5382-16-1

Category: piperidines, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Category: piperidines.

Punetha, Ankita;Green, Keith D.;Garzan, Atefeh;Thamban Chandrika, Nishad;Willby, Melisa J.;Pang, Allan H.;Hou, Caixia;Holbrook, Selina Y. L.;Krieger, Kyle;Posey, James E.;Parish, Tanya;Tsodikov, Oleg V.;Garneau-Tsodikova, Sylvie research published 《 Structure-based design of haloperidol analogues as inhibitors of acetyltransferase Eis from Mycobacterium tuberculosis to overcome kanamycin resistance》, the research content is summarized as follows. Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a deadly bacterial disease. Drug-resistant strains of Mtb make eradication of TB a daunting task. Overexpression of the enhanced intracellular survival (Eis) protein by Mtb confers resistance to the second-line antibiotic kanamycin (KAN). Eis is an acetyltransferase that acetylates KAN, inactivating its antimicrobial function. Development of Eis inhibitors as KAN adjuvant therapeutics is an attractive path to forestall and overcome KAN resistance. We discovered that an antipsychotic drug, haloperidol (HPD, 1), was a potent Eis inhibitor with IC50 = 0.39 ± 0.08 μM. We determined the crystal structure of the Eis-haloperidol (1) complex, which guided synthesis of 34 analogs. The structure-activity relationship study showed that in addition to haloperidol (1), eight analogs, some of which were smaller than 1, potently inhibited Eis (IC50 ≤ 1 μM). Crystal structures of Eis in complexes with three potent analogs and droperidol (DPD), an antiemetic and antipsychotic, were determined Three compounds partially restored KAN sensitivity of a KAN-resistant Mtb strain K204 overexpressing Eis. The Eis inhibitors generally did not exhibit cytotoxicity against mammalian cells. All tested compounds were modestly metabolically stable in human liver microsomes, exhibiting 30-60% metabolism over the course of the assay. While direct repurposing of haloperidol as an anti-TB agent is unlikely due to its neurotoxicity, this study reveals potential approaches to modifying this chem. scaffold to minimize toxicity and improve metabolic stability, while preserving potent Eis inhibition.

Category: piperidines, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Prishchenko, Andrey A. team published research on Journal of Organometallic Chemistry in 2022 | 5382-16-1

Related Products of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Related Products of 5382-16-1.

Prishchenko, Andrey A.;Alekseyev, Roman S.;Novikova, Olga P.;Livantsov, Mikhail V.;Livantsova, Ludmila I.;Petrosyan, Valery S. research published 《 Catalytic N-diphosphonomethylation of amino alkanols and bisamino alkanes using tris(trimethylsilyl) phosphite as a convenient synthon》, the research content is summarized as follows. The new mono- and bis(aminomethylenediphosphonic) acids are synthesized for the first time via unique reaction of tris(trimethylsilyl) phosphite and various N-formyl amino alkanols or bis(N-formyl amino) alkanes at the presence of effective catalyst – trimethylsilyl triflate under mild conditions. The further treatment of initially formed trimethylsilyl intermediates with the methanol excess resulted in the crystalline mono- and bis(aminomethylenediphosphonic) acids in high yields. The catalytic scheme of target substances formation is proposed and discussed in detail. The structures of target acids were confirmed by the 1H, 13C, 31P NMR spectra and high resolution mass spectra (HRMS). The resulting compounds are of great interest as perspective bioactive substances with versatile properties and effective polydentate ligands.

Related Products of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Pola, Suresh team published research on Bioorganic & Medicinal Chemistry in 2021 | 5382-16-1

Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Application of C5H11NO.

Pola, Suresh;Shah, Shailesh R.;Pingali, Harikishore;Zaware, Pandurang;Thube, Baban;Makadia, Pankaj;Patel, Hoshang;Bandyopadhyay, Debdutta;Rath, Akshyaya;Giri, Suresh;Patel, Jitendra H.;Ranvir, R. K.;Sundar, S. R.;Patel, Harilal;Kumar, Jeevan;Jain, Mukul R. research published 《 Discovery of a potent G-protein-coupled receptor 119 agonist for the treatment of type 2 diabetes》, the research content is summarized as follows. Benzylidenethiazolidinedione as a novel polar head for discovering a new series of GPR119 agonists I [R = H, Me; R1 = methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, isobutoxycarbonyl, benzyloxycarbonyl] was discussed. The identification of a potent and oral GPR 119 agonist II [R = Me; R1 = tert-butoxycarbonyl], which showed in-vitro potency in the cell-based assay and in-vivo efficacy without exerting any significant signs of toxicity in relevant animal models.

Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ou Yang, Cheng-Hsin team published research on European Journal of Organic Chemistry in 2022 | 5382-16-1

Recommanded Product: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Recommanded Product: 4-Piperidinol.

Ou Yang, Cheng-Hsin;Liu, Wan-Hsuan;Yang, Sheng;Chiang, Yao-Yu;Shie, Jiun-Jie research published 《 Copper-Mediated Synthesis of (E)-β-Aminoacrylonitriles from 1,2,3-Triazine and Secondary Amines》, the research content is summarized as follows. A simple protocol for the synthesis of (E)-β-aminoacrylonitriles RCH=CHCN (R = dimethylamino, piperidin-1-yl, imidazol-1-yl, etc.) via Cu(OAc)2-mediated nucleophilic addition of secondary amines such as piperidine, dimethylamine, imidazole, etc. to 1,2,3-triazine and an aerobic oxidation reaction was described. The reactions, which were studied with a broad substrate scope, are effective with cyclic, heterocyclic, aliphatic, allylic, and benzylic amines as well as L-proline derivatives The reactions use catalytic Cu(OAc)2 to promote 1,2,3-triazine addition with various secondary amines, followed by in situ loss of nitrogen and subsequent imine oxidation to generate the corresponding (E)-β-aminoacrylonitriles in good yields with excellent stereoselectivities. These copper(II)-mediated aerobic oxidation reactions proceed under mild reaction conditions by oxidation of the Cu(II) species using mol. oxygen to complete the cycle without the participation of ligand, base or chem. oxidant additives.

Recommanded Product: 4-Piperidinol, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Patel, Piyush A. team published research on Marine Drugs in 2021 | 5382-16-1

Category: piperidines, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Category: piperidines.

Patel, Piyush A.;Bruun, Tanja;Ilina, Polina;Makkyla, Heidi;Lempinen, Antti;Yli-Kauhaluoma, Jari;Tammela, Paivi;Kiuru, Paula S. research published 《 Synthesis and Cytotoxicity Evaluation of Spirocyclic Bromotyrosine Clavatadine C Analogs》, the research content is summarized as follows. Marine-originated spirocyclic bromotyrosines are considered as promising scaffolds for new anticancer drugs. In a continuation of research to develop potent and more selective anticancer compounds, authors synthesized a library of 32 spirocyclic clavatadine analogs by replacing the agmatine, i.e., 4-(aminobutyl)guanidine, side chain with different substituents. These compounds were tested for cytotoxicity against skin cancer using the human melanoma cell line (A-375) and normal human skin fibroblast cell line (Hs27). The highest cytotoxicity against the A-375 cell line was observed for dichloro compound I (CC50 0.4 ± 0.3μM, selectivity index (SI) 2). The variation of selectivity ranged from SI 0.4 to reach 2.4 for the pyridin-2-yl derivative II and hydrazide analog of 2-picoline III. The structure-activity relationships of the compounds in respect to cytotoxicity and selectivity toward cancer cell lines are discussed.

Category: piperidines, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Pipal, Robert W. team published research on Nature (London, United Kingdom) in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Safety of 4-Piperidinol

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Safety of 4-Piperidinol.

Pipal, Robert W.;Stout, Kenneth T.;Musacchio, Patricia Z.;Ren, Sumei;Graham, Thomas J. A.;Verhoog, Stefan;Gantert, Liza;Lohith, Talakad G.;Schmitz, Alexander;Lee, Hsiaoju S.;Hesk, David;Hostetler, Eric D.;Davies, Ian W.;MacMillan, David W. C. research published 《 Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery》, the research content is summarized as follows. Positron emission tomog. (PET) radioligands (radioactively labeled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncol. targets1. Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands2, yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalyzed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Me groups are among the most prevalent structural elements found in bioactive mols., and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labeled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clin. used compounds [11C]UCB-J and [11C]PHNO. We further outline the direct utility of this protocol for preclin. PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clin. imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Safety of 4-Piperidinol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Niu, Ben team published research on Organic Letters in 2022 | 5382-16-1

Formula: C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Formula: C5H11NO.

Niu, Ben;Sachidanandan, Krishnakumar;Blackburn, Bryan G.;Cooke, Maria Victoria;Laulhe, Sebastien research published 《 Photoredox Polyfluoroarylation of Alkyl Halides via Halogen-Atom-Transfer》, the research content is summarized as follows. The first polyfluoroarylation of unactivated alkyl halides RX (R = n-nonyl, cyclohexyl, adamantan-1-yl, 1-[(thiophen-2-yl)carbonyl]piperidin-4-yl, etc.; X = I, Br) e.g., I via halogen-atom-transfer process was described. This method converts primary, secondary, and tertiary alkyl halides into the resp. polyfluoroaryl compounds e.g., 3-(perfluorophenyl)butyl 4-methoxybenzoate in good yields in the presence of amide, carbamate, ester, aromatic and sulfonamide moieties including derivatives of complex bioactive mols. Mechanistic work revealed that this transformation proceeds through an alkyl radical generated after a halogen-atom-transfer.

Formula: C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ni, Tingjunhong team published research on Molecules in 2022 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Recommanded Product: 4-Piperidinol

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Recommanded Product: 4-Piperidinol.

Ni, Tingjunhong;Ding, Zichao;Xie, Fei;Hao, Yumeng;Bao, Junhe;Zhang, Jingxiang;Yu, Shichong;Jiang, Yuanying;Zhang, Dazhi research published 《 Design, Synthesis, and In Vitro and In Vivo Antifungal Activity of Novel Triazoles Containing Phenylethynyl Pyrazole Side Chains》, the research content is summarized as follows. A series of triazole derivatives containing phenylethynyl pyrazole moiety as side chain I (R = 4-fluorobenzylaminyl, 4-hydroxypiperidin-1-yl, morpholin-4-yl, etc.) and II (R1 = F, Cl, CN, CF3, OCF3) were designed, synthesized, and most of them exhibited good in vitro antifungal activities. Especially, triazole derivatives I (R = (furan-2-ylmethyl)aminyl) and II (R1 = CN) showed excellent in vitro activities against C. albicans (MIC = 0.125, 0.0625μg/mL), C. neoformans (MIC = 0.125, 0.0625μg/mL), and A. fumigatus (MIC = 8.0, 4.0μg/mL). Triazole derivatives II (R1 = CN) also exerted superior activity to triazole derivatives I (R = (furan-2-ylmethyl)aminyl) and fluconazole in inhibiting hyphae growth of C. albicans and inhibiting drug-resistant strains of C. albicans, and it could reduce fungal burdens in mice kidney at a dosage of 1.0 mg/kg. An in vivo efficacy evaluation indicated that triazole derivatives II (R1 = CN) could effectively protect mice models from C. albicans infection at doses of 0.5, 1.0, and 2.0 mg/kg. These results suggested that triazole derivatives II (R1 = CN) deserves further investigation.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Recommanded Product: 4-Piperidinol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Nara, Susheel J. team published research on Journal of Medicinal Chemistry in 2022 | 5382-16-1

Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Application of C5H11NO.

Nara, Susheel J.;Jogi, Srinivas;Cheruku, Srinivas;Kandhasamy, Sarkunam;Jaipuri, Firoz;Kathi, Pavan Kalyan;Reddy, Subba;Sarodaya, Sanket;Cook, Erica M.;Wang, Tao;Sitkoff, Doree;Rossi, Karen A.;Ruzanov, Max;Kiefer, Susan E.;Khan, Javed A.;Gao, Mian;Reddy, Satyanarayana;Sivaprasad LVJ, Sankara;Sane, Ramola;Mosure, Kathy;Zhuo, Xiaoliang;Cao, Gary G.;Ziegler, Milinda;Azzara, Anthony;Krupinski, John;Soars, Matthew G.;Ellsworth, Bruce A.;Wacker, Dean A. research published 《 Discovery of BMS-986339, a Pharmacologically Differentiated Farnesoid X Receptor Agonist for the Treatment of Nonalcoholic Steatohepatitis》, the research content is summarized as follows. While several farnesoid X receptor (FXR) agonists under clin. investigation for the treatment of nonalcoholic steatohepatitis (NASH) have shown beneficial effects, adverse effects such as pruritus and elevation of plasma lipids have limited their clin. efficacy and approvability. Herein, we report the discovery and preclin. evaluation of compound 32 (BMS-986339), a nonbile acid FXR agonist with a pharmacol. distinct profile relative to our previously reported agonist BMS-986318. Compound 32 exhibited potent in vitro and in vivo activation of FXR, albeit with a context-dependent profile that resulted in tissue-selective effects in vivo. To our knowledge, this is the first report that demonstrates differential induction of Fgf15 in the liver and ileum by FXR agonists in vivo. Compound 32 demonstrated robust antifibrotic efficacy despite reduced activation of certain genes in the liver, suggesting that the addnl. pharmacol. of BMS-986318 does not further benefit efficacy, possibly presenting an opportunity for reduced adverse effects. Further evaluation in humans is warranted to validate this hypothesis.

Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem