An overview of features, applications of compound:C7H13NO2

Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.. Formula: C7H13NO2

In 2020 CHEM-EUR J published article about COUPLING REACTIONS; ARYL CHLORIDES; PHOTOREDOX; AMINES; PRECATALYST; AMMONIA in [Han, Dongyang; Li, Sasa; Jin, Jian] Univ Chinese Acad Sci, Chinese Acad Sci, CAS Key Lab Synthet Chem Nat Subst, Ctr Excellence Mol Synth,Shanghai Inst Organ Chem, 345 Lingling Rd, Shanghai 200032, Peoples R China; [Xia, Siqi; Su, Mincong] Shanghai Univ, Ctr Supramol Chem & Catalysis, Coll Sci, Dept Chem, 99 Shangda Rd, Shanghai 200444, Peoples R China in 2020, Cited 65. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7. Formula: C7H13NO2

An efficient and operationally simple Ni-catalyzed amination protocol has been developed. This methodology features a simple Ni(II)salt, an organic base and catalytic amounts of both a pyridinium additive and Zn metal. A diverse number of (hetero)aryl halides were coupled successfully with primary and secondary alkyl amines, and anilines in good to excellent yields. Similarly, benzophenone imine gave the correspondingN-arylation product in an excellent yield.

Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.. Formula: C7H13NO2

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Chemical Research in 1,4-Dioxa-8-azaspiro[4.5]decane

Welcome to talk about 177-11-7, If you have any questions, you can contact Di Mussi, R; Spadaro, S; Volta, CA; Bartolomeo, N; Trerotoli, P; Staffieri, F; Pisani, L; Iannuzziello, R; Dalfino, L; Murgolo, F; Grasso, S or send Email.. Computed Properties of C7H13NO2

Computed Properties of C7H13NO2. Di Mussi, R; Spadaro, S; Volta, CA; Bartolomeo, N; Trerotoli, P; Staffieri, F; Pisani, L; Iannuzziello, R; Dalfino, L; Murgolo, F; Grasso, S in [Di Mussi, Rosa; Pisani, Luigi; Iannuzziello, Rachele; Dalfino, Lidia; Murgolo, Francesco; Grasso, Salvatore] Univ Bari Aldo Moro, Osped Policlin, Dipartimento Emergenza & Trapianti Organo DETO, Sez Anestesiol & Rianimaz, Piazza Giulio Cesare 11, Bari, Italy; [Spadaro, Savino; Volta, Carlo Alberto] Univ Ferrara, Dipartimento Morfol Chirurg & Med Sperimentale, Sez Anestesiol & Terapia Intens Univ, Ferrara, Italy; [Bartolomeo, Nicola; Trerotoli, Paolo] Univ Aldo Moro, Dipartimento Sci Biomed & Oncol Umana, Cattedra Stat Med, Bari, Italy; [Staffieri, Francesco] Univ Bari Aldo Moro, Dipartimento Emergenza & Trapianti Organo DETO, Sez Chirurg Vet, Bari, Italy published Continuous assessment of neuro-ventilatory drive during 12 h of pressure support ventilation in critically ill patients in 2020, Cited 67. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7.

Introduction Pressure support ventilation (PSV) should allow spontaneous breathing with a normal neuro-ventilatory drive. Low neuro-ventilatory drive puts the patient at risk of diaphragmatic atrophy while high neuro-ventilatory drive may causes dyspnea and patient self-inflicted lung injury. We continuously assessed for 12 h the electrical activity of the diaphragm (EAdi), a close surrogate of neuro-ventilatory drive, during PSV. Our aim was to document the EAdi trend and the occurrence of periods of Low and/or High neuro-ventilatory drive during clinical application of PSV. Method In 16 critically ill patients ventilated in the PSV mode for clinical reasons, inspiratory peak EAdi peak (EAdi(PEAK)), pressure time product of the trans-diaphragmatic pressure per breath and per minute (PTPDI/b and PTPDI/min, respectively), breathing pattern and major asynchronies were continuously monitored for 12 h (from 8 a.m. to 8 p.m.). We identified breaths with Normal (EAdi(PEAK) 5-15 mu V), Low (EAdi(PEAK) < 5 mu V) and High (EAdi(PEAK) > 15 mu V) neuro-ventilatory drive. Results Within all the analyzed breaths (177.117), the neuro-ventilatory drive, as expressed by the EAdi(PEAK), was Low in 50.116 breath (28%), Normal in 88.419 breaths (50%) and High in 38.582 breaths (22%). The average times spent in Low, Normal and High class were 1.37, 3.67 and 0.55 h, respectively (p < 0.0001), with wide variations among patients. Eleven patients remained in the Low neuro-ventilatory drive class for more than 1 h, median 6.1 [3.9-8.5] h and 6 in the High neuro-ventilatory drive class, median 3.4 [2.2-7.8] h. The asynchrony index was significantly higher in the Low neuro-ventilatory class, mainly because of a higher number of missed efforts. Conclusions We observed wide variations in EAdi amplitude and unevenly distributed Low and High neuro ventilatory drive periods during 12 h of PSV in critically ill patients. Further studies are needed to assess the possible clinical implications of our physiological findings. Welcome to talk about 177-11-7, If you have any questions, you can contact Di Mussi, R; Spadaro, S; Volta, CA; Bartolomeo, N; Trerotoli, P; Staffieri, F; Pisani, L; Iannuzziello, R; Dalfino, L; Murgolo, F; Grasso, S or send Email.. Computed Properties of C7H13NO2

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Get Up to Speed Quickly on Emerging Topics:1,4-Dioxa-8-azaspiro[4.5]decane

Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.. Name: 1,4-Dioxa-8-azaspiro[4.5]decane

Name: 1,4-Dioxa-8-azaspiro[4.5]decane. Authors Wu, J; Zheng, CM; Li, BY; Hawkins, JM; Scott, SL in ROYAL SOC CHEMISTRY published article about in [Wu, Jing; Zheng, Chunming; Scott, Susannah L.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA; [Li, Bryan] Pfizer Global Res & Dev, Chem R&D La Jolla Lab, San Diego, CA 92121 USA; [Hawkins, Joel M.] Pfizer Global Res & Dev, Groton, CT 06371 USA; [Scott, Susannah L.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA in 2021, Cited 64. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7

N-Boc deprotection (deBoc) is a common reaction in pharmaceutical research and development, as well as pharma manufacturing. Use of a catalyst lowers the required reaction temperature, and heterogeneous catalysts allow the reaction to be conducted in a continuous flow reactor with a low-boiling solvent, facilitating product separation and enhancing efficiency and productivity relative to a batch process. In this study, we explore the use of simple solid Bronsted acid catalysts to achieve continuous N-Boc deprotection of amines, without additional workup steps. Using THF as the solvent, H-BEA zeolite affords high yields of a variety of aromatic and aliphatic amines, often in residence times of less than a minute at 140 degrees C. The same catalyst/solvent combination is ineffective in batch conditions, due to the much lower temperature of refluxing THF. Boc-protected p-chloroaniline was deprotected with a throughput of 18 mmol p-chloroaniline per h per g(cat), sustained over 9 h. The active sites of the zeolite do not appear to be directly associated with the Al framework substitution in the micropores, since partially ion-exchanged Na/H-BEA shows activity similar to H-BEA. The strong Bronsted acid sites (framework [Si(OH)Al]), are likely poisoned by the amine product. Moderate Bronsted acid sites associated with silanol defects near Al on or near the external surface (and not susceptible to Na+-exchange) are presumably the active sites, since they are not poisoned even by more basic aliphatic amines.

Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.. Name: 1,4-Dioxa-8-azaspiro[4.5]decane

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Extended knowledge of 177-11-7

Recommanded Product: 177-11-7. Welcome to talk about 177-11-7, If you have any questions, you can contact Zhang, BS; Li, YK; Zhang, Z; An, Y; Wen, YH; Gou, XY; Quan, SQ; Wang, XG; Liang, YM or send Email.

Recommanded Product: 177-11-7. Zhang, BS; Li, YK; Zhang, Z; An, Y; Wen, YH; Gou, XY; Quan, SQ; Wang, XG; Liang, YM in [Zhang, Bo-Sheng; Zhang, Zhe; An, Yang; Wen, Yu-Hua; Gou, Xue-Ya; Quan, Si-Qi; Wang, Xin-Gang; Liang, Yong-Min] Lanzhou Univ, State Key Lab Appl Organ Chem, Lanzhou 730000, Gansu, Peoples R China; [Li, Yuke] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China; [Li, Yuke] Chinese Univ Hong Kong, Ctr Sci Modeling & Computat, Shatin, Hong Kong, Peoples R China published Synthesis of C4-Aminated Indoles via a Catellani and Retro-Diels-Alder Strategy in 2019, Cited 83. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7.

Highly functionalized 4-aminoindoles were synthesized via the three-component cross-coupling of o-iodoaniline, N-benzoyloxyamines, and norbornadiene. The Catellani and retro-Diels-Alder strategy was used in this domino process. o-Iodoaniline, with electron-donating and sterically hindered protecting groups, made the reaction selective toward o-C-H amination. On the basis of density functional theory calculations, the intramolecular Buchwald coupling of this reaction underwent a dearomatization and a 1,3-palladium migration process. The reasons for the control of the chemical selectivity by the protecting groups are given. Moreover, synthetic applications toward 4-piperazinylindole and a GOT1 inhibitor were realized.

Recommanded Product: 177-11-7. Welcome to talk about 177-11-7, If you have any questions, you can contact Zhang, BS; Li, YK; Zhang, Z; An, Y; Wen, YH; Gou, XY; Quan, SQ; Wang, XG; Liang, YM or send Email.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Extended knowledge of 177-11-7

Welcome to talk about 177-11-7, If you have any questions, you can contact Gou, Q; Liu, ZN; Cao, TW; Tan, XP; Shi, WB; Ran, M; Cheng, FX; Qn, J or send Email.. Category: piperidines

Category: piperidines. I found the field of Chemistry very interesting. Saw the article Copper-Catalyzed Coupling of Sulfonamides with Alkylamines: Synthesis of (E)-N-Sulfonylformamidines published in 2020, Reprint Addresses Gou, Q (corresponding author), Yangtze Normal Univ, Chongqing, Peoples R China.; Cheng, FX (corresponding author), Qujing Normal Univ, Qujing, Peoples R China.; Qn, J (corresponding author), Yunnan Univ, Kunming, Yunnan, Peoples R China.. The CAS is 177-11-7. Through research, I have a further understanding and discovery of 1,4-Dioxa-8-azaspiro[4.5]decane.

Herein, we describe an efficient copper-catalyzed coupling of sulfonamides with alkylamines to synthesize (E)-N-sulfonylformamidines. The reaction is accomplished under mild conditions without the use of a corrosive acid or base as an additive. It tolerates a broad scope of substrates and generates the products with exclusive (E)-stereoselectivity.

Welcome to talk about 177-11-7, If you have any questions, you can contact Gou, Q; Liu, ZN; Cao, TW; Tan, XP; Shi, WB; Ran, M; Cheng, FX; Qn, J or send Email.. Category: piperidines

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

A new application about1,4-Dioxa-8-azaspiro[4.5]decane

Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.. Category: piperidines

Category: piperidines. Recently I am researching about AGONIST SALVINORIN; PROLACTIN; DYNORPHIN; LY2456302; DOPAMINE; STRESS; 2-METHYL-N-((2′-(PYRROLIDIN-1-YLSULFONYL)BIPHENYL-4-YL)METHYL)PROPAN-1-AMINE; EXPRESSION; DISCOVERY; BINDING, Saw an article supported by the National Institute of Neurological Disorders and Stroke (NINDS) of the National Institutes of Health (NIH)United States Department of Health & Human ServicesNational Institutes of Health (NIH) – USANIH National Institute of Neurological Disorders & Stroke (NINDS); BlackThorn Therapeutics; Blueprint Neurotherapeutics Network (BPN) of the NIH Blueprint for Neuroscience Research [1UH2 NS093030-01]. Published in AMER CHEMICAL SOC in WASHINGTON ,Authors: Guerrero, M; Urbano, M; Kim, EK; Gamo, AM; Riley, S; Abgaryan, L; Leaf, N; Van Orden, LJ; Brown, SJ; Xie, JY; Porreca, F; Cameron, MD; Rosen, H; Roberts, E. The CAS is 177-11-7. Through research, I have a further understanding and discovery of 1,4-Dioxa-8-azaspiro[4.5]decane

kappa opioid receptor (KOR) antagonists are potential pharmacotherapies for the treatment of migraine and stress-related mood disorders including depression, anxiety, and drug abuse, thus the development of novel KOR antagonists with an improved potency/selectivity profile and medication-like duration of action has attracted the interest of the medicinal chemistry community. In this paper, we describe the discovery of 1-(6-ethyl-8-fluoro-4-methyl-3-(3-methyl-1,2,4-oxadiazol-5-yl)quinolin-2-yl)-N-(tetrahydro-2 H-pyran-4-yl)piperidin-4 amine (CYM-53093, BTRX-335140) as a potent and selective KOR antagonist, endowed with favorable in vitro ADMET and in vivo pharmacokinetic profiles and medication-like duration of action in rat pharmacodynamic experiments. Orally administered CYM-53093 showed robust efficacy in antagonizing KOR agonist-induced prolactin secretion and in tail-flick analgesia in mice. CYM-53093 exhibited a broad selectivity over a panel of off-target proteins. This compound is in phase 1 clinical trials for the treatment of neuropsychiatric disorders wherein dynorphin is thought to contribute to the underlying pathophysiology.

Bye, fridends, I hope you can learn more about C7H13NO2, If you have any questions, you can browse other blog as well. See you lster.. Category: piperidines

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

How did you first get involved in researching 177-11-7

Welcome to talk about 177-11-7, If you have any questions, you can contact Drapeau, MP; Bahri, J; Lichte, D; Goossen, LJ or send Email.. SDS of cas: 177-11-7

I found the field of Chemistry very interesting. Saw the article Decarboxylative ipso Amination of Activated Benzoic Acids published in 2019. SDS of cas: 177-11-7, Reprint Addresses Goossen, LJ (corresponding author), Ruhr Univ Bochum, Fak Chem & Biochem, ZEMOS, Univ Str 150, D-44801 Bochum, Germany.. The CAS is 177-11-7. Through research, I have a further understanding and discovery of 1,4-Dioxa-8-azaspiro[4.5]decane

In the presence of a bimetallic Pd/Cu system with 1,10-phenanthroline as the ligand and either air or N-methylmorpholine N-oxide as the oxidant, electron-deficient benzoic acids undergo oxidative decarboxylative coupling with unprotected amines. This operationally simple aniline synthesis is widely applicable with respect to the amine and gives good yields, even on multigram scale. The orthogonality of this reaction to other Pd-catalyzed cross-couplings allows the concise synthesis of multisubstituted arenes by sequential C-C, C-Cl, and C-N functionalizations. Mechanistic investigations suggest the intermediacy of a hypervalent Pd species.

Welcome to talk about 177-11-7, If you have any questions, you can contact Drapeau, MP; Bahri, J; Lichte, D; Goossen, LJ or send Email.. SDS of cas: 177-11-7

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Interesting scientific research on C7H13NO2

Formula: C7H13NO2. Welcome to talk about 177-11-7, If you have any questions, you can contact Bouarfa, S; Grassl, S; Ivanova, M; Langlais, T; Bentabed-Ababsa, G; Lassagne, F; Erb, W; Roisnel, T; Dorcet, V; Knochel, P; Mongin, F or send Email.

An article Copper- and Cobalt-Catalyzed Syntheses of Thiophene-Based Tertiary Amines WOS:000472974000024 published article about C-H AMINATION; CROSS-COUPLING REACTIONS; N-ARYLATION SEQUENCE; CENTER-DOT-LICL; ELECTROPHILIC AMINATION; DEPROTOMETALATION-IODINATION; ANTIPROLIFERATIVE ACTIVITY; DEPROTONATIVE METALATION; BOND FUNCTIONALIZATION; HETEROCYCLIC AMINES in [Bouarfa, Salima; Langlais, Timothy; Lassagne, Frederic; Erb, William; Roisnel, Thierry; Dorcet, Vincent; Mongin, Florence] Univ Rennes, CNRS, ISCR, UMR 6226, F-35000 Rennes, France; [Bouarfa, Salima; Bentabed-Ababsa, Ghenia] Univ Oran1 Ahmed Ben Bella, Fac Sci Exactes & Appl, Lab Synth Organ Appl, BP 1524 El MNaouer, Oran 31000, Algeria; [Grassl, Simon; Ivanova, Maria; Langlais, Timothy; Knochel, Paul] Ludwig Maximilians Univ Munchen, Dept Chem, Butenandtstr 5-13,Haus F, D-81377 Munich, Germany in 2019, Cited 105. Formula: C7H13NO2. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7

Thienylzinc halides and related compounds prepared by deprotonation followed by transmetalation were used in copper-catalyzed amination using N-benzoyloxy secondary amines. By extending the reaction to 1,5-naphthyridine, it was showed that the competitive dimer formation observed in the case of thiophenes was linked with the low stability of some thienylamines rather than homocoupling. Interestingly, thienylzinc halides and related compounds prepared by transmetalation of thienylmagnesium halides, either prepared from their bromo-precursors or generated by deprotometalation, were satisfactorily employed in cobalt-catalyzed aminations. Finally, aminothiophenes were involved in copper-catalyzed mono- and di-N-arylations, affording differently substituted di- and triphenylamines.

Formula: C7H13NO2. Welcome to talk about 177-11-7, If you have any questions, you can contact Bouarfa, S; Grassl, S; Ivanova, M; Langlais, T; Bentabed-Ababsa, G; Lassagne, F; Erb, W; Roisnel, T; Dorcet, V; Knochel, P; Mongin, F or send Email.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Simple exploration of C7H13NO2

Name: 1,4-Dioxa-8-azaspiro[4.5]decane. Welcome to talk about 177-11-7, If you have any questions, you can contact Kuhl, N; Raval, S; Cohen, RD or send Email.

Recently I am researching about CYANOGEN-BROMIDE; N-CYANATION; ELECTROPHILIC CYANATION; TIEMANN REARRANGEMENT; PRACTICAL SYNTHESIS; BACE1 INHIBITOR; VERUBECESTAT; AMINATION, Saw an article supported by the . Published in AMER CHEMICAL SOC in WASHINGTON ,Authors: Kuhl, N; Raval, S; Cohen, RD. The CAS is 177-11-7. Through research, I have a further understanding and discovery of 1,4-Dioxa-8-azaspiro[4.5]decane. Name: 1,4-Dioxa-8-azaspiro[4.5]decane

An operationally simple oxidation cyanation method for the synthesis of cyanamides is described. The procedure utilizes inexpensive and commercially available N-chlorosuccinimide and Zn(CN)(2) as reagents to avoid direct handling of toxic cyanogen halides. It is demonstrated to be amenable for the cyanation of a variety of primary and secondary amines and aniline derivatives as well as a complex synthetic intermediate en route to verubecestat (MK-8931). Additionally, kinetic measurements and other control experiments are reported to shed light onto the mechanism of this cyanation reaction.

Name: 1,4-Dioxa-8-azaspiro[4.5]decane. Welcome to talk about 177-11-7, If you have any questions, you can contact Kuhl, N; Raval, S; Cohen, RD or send Email.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem

 

Final Thoughts on Chemistry for 1,4-Dioxa-8-azaspiro[4.5]decane

Recommanded Product: 1,4-Dioxa-8-azaspiro[4.5]decane. Welcome to talk about 177-11-7, If you have any questions, you can contact Chen, TC; Yu, DS; Chen, SJ; Chen, CL; Lee, CC; Hsieh, YY; Chang, LC; Guh, JH; Lin, JJ; Huang, HS or send Email.

In 2019 ARAB J CHEM published article about RAPID COLORIMETRIC ASSAY; ANTIPROLIFERATIVE EVALUATION; MOLECULAR HYBRIDIZATION; ANALOGS; CANCER; CAMPTOTHECIN; ALKALOIDS; MECHANISM; DISCOVERY; APOPTOSIS in [Chen, Tsung-Chih; Chen, Chun-Liang; Lee, Chia-Chung; Huang, Hsu-Shan] Taipei Med Univ, Coll Med Sci & Technol, Grad Inst Canc Biol & Drug Discovery, Taipei 110, Taiwan; [Chen, Tsung-Chih; Yu, Dah-Shyong; Chen, Chun-Liang; Lee, Chia-Chung; Huang, Hsu-Shan] Natl Def Med Ctr, Grad Inst Life Sci, Taipei 114, Taiwan; [Chen, Tsung-Chih; Chen, Shiag-Jiun; Hsieh, Ying-Yu; Huang, Hsu-Shan] Natl Def Med Ctr, Sch Pharm, Taipei 114, Taiwan; [Yu, Dah-Shyong] Triserv Gen Hosp, Dept Surg, Div Urol, Urooncol Lab, Taipei 114, Taiwan; [Yu, Dah-Shyong] Natl Def Med Ctr, Inst Prevent Med, Taipei 114, Taiwan; [Chang, Lien-Cheng; Lin, Jing-Jer] Natl Taiwan Univ, Coll Med, Inst Biochem & Mol Biol, Taipei 100, Taiwan; [Chang, Lien-Cheng] Minist Hlth & Welf, Food & Drug Adm, Taipei 115, Taiwan; [Guh, Jih-Hwa] Natl Taiwan Univ, Sch Pharm, Taipei 100, Taiwan in 2019, Cited 40. The Name is 1,4-Dioxa-8-azaspiro[4.5]decane. Through research, I have a further understanding and discovery of 177-11-7. Recommanded Product: 1,4-Dioxa-8-azaspiro[4.5]decane

Several 9-chloro-11H-indeno[1,2-c]quinolin-11-one derivatives have been designed which is replacing side chains with different groups containing oxygen, nitrogen or sulfur atoms. Substitution of C-6 on the starting structure, 6,9-dichloro-11H-indeno[1,2-c]quinolin-11-one, using apposite nucleophilic group with a suitable base or acid could be obtained 28 novel tetracyclic azafluorenone derivatives. The cytotoxic activity of these analogues was examined in cancer cell lines by MTT assay and compounds 4, 5, 13, and 26 were selected to evaluate in topoisomerase I drug screening assay, respectively. At the same time, 17 compounds were selected for NCI-60 anticancer drug screen to prevent the narrower concept of an in vitro screening model. Its worth to find that 9-chloro-6-(piperazin-1-yl)-11H-indeno[1,2-c]quinolin-11-one (12) showed greater cytotoxicity than another azafluorenone derivatives with an average GI(50) of 10.498 mu M over 60 cell lines. We also found that another analogue, 9-chloro-6-(2-methylpiperazin-1-yl)-11H-indeno[1,2-c]quinolin-11-one (13), exhibited preferential growth inhibition effect toward cancer cell lines and showed a significant inhibitory effect on topoisomerase I. (C) 2016 Production and hosting by Elsevier B.V. on behalf of King Saud University.

Recommanded Product: 1,4-Dioxa-8-azaspiro[4.5]decane. Welcome to talk about 177-11-7, If you have any questions, you can contact Chen, TC; Yu, DS; Chen, SJ; Chen, CL; Lee, CC; Hsieh, YY; Chang, LC; Guh, JH; Lin, JJ; Huang, HS or send Email.

Reference:
Piperidine – Wikipedia,
Piperidine | C5H7510N – PubChem