Morisseau, Christophe et al. published their research in Journal of Lipid Research in 2014 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising 伪-glucosidase inhibitors. The former are analogs of DNJ with an improved 伪-glucosidase inhibitory profile than that of DNJ. Boisson et al.Recommanded Product: 1222780-33-7

Effect of soluble epoxide hydrolase polymorphism on substrate and inhibitor selectivity and dimer formation was written by Morisseau, Christophe;Wecksler, Aaron T.;Deng, Catherine;Dong, Hua;Yang, Jun;Lee, Kin Sing S.;Kodani, Sean D.;Hammock, Bruce D.. And the article was included in Journal of Lipid Research in 2014.Recommanded Product: 1222780-33-7 The following contents are mentioned in the article:

Epoxy FAs (EpFAs) are important lipid mediators that are mainly metabolized by soluble epoxide hydrolase (sEH). Thus, sEH inhibition is a promising therapeutic target to treat numerous ailments. Several sEH polymorphisms result in amino acid substitutions and alter enzyme activity. K55R and R287Q are associated with inflammatory, cardiovascular, and metabolic diseases. R287Q seems to affect sEH activity through reducing formation of a catalytically active dimer. Thus, understanding how these SNPs affect the selectivity of sEH for substrates and inhibitors is of potential clin. importance. We investigated the selectivity of four sEH SNPs toward a series of EpFAs and inhibitors. We found that the SNPs alter the catalytic activity of the enzyme but do not alter the relative substrate and inhibitor selectivity. We also determined their dimer/monomer constants (KD/M). The WT sEH formed a very tight dimer, with a KD/M in the low picomolar range. Only R287Q resulted in a large change of the KD/M. However, human tissue concentrations of sEH suggest that it is always in its dimer form independently of the SNP. These results suggest that the different biologies associated with K55R and R287Q are not explained by alteration in dimer formation or substrate selectivity. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Recommanded Product: 1222780-33-7).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising 伪-glucosidase inhibitors. The former are analogs of DNJ with an improved 伪-glucosidase inhibitory profile than that of DNJ. Boisson et al.Recommanded Product: 1222780-33-7

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Kim, So Ah et al. published their research in Vascular Pharmacology in 2022 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Name: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Soluble epoxide hydrolase inhibitor, TPPU, attenuates progression of atherosclerotic lesions and vascular smooth muscle cell phenotypic switching was written by Kim, So Ah;Lee, Ae Sin;Lee, Han Bit;Hur, Haeng Jeon;Lee, Sang Hee;Sung, Mi Jeong. And the article was included in Vascular Pharmacology in 2022.Name: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea The following contents are mentioned in the article:

Atherosclerosis manifests as a chronic inflammation resulting from multiple interactions between circulating factors and various cell types in blood vessel walls. Growing evidence shows that phenotypic switching and proliferation of vascular smooth muscle cells (VSMCs) plays an important role in the progression of atherosclerosis. Soluble epoxide hydrolase (sEH)/epoxyeicosatrienoic acids are mediated by vascular inflammation. N-[1-(1-oxopropyl)-4-piperidinyl]-N-[4-(trifluoromethoxy)phenyl]-urea (TPPU) is an sEH inhibitor. This study investigated the therapeutic effect of TPPU on atherosclerosis in vivo and homocysteine-induced vascular inflammation in vitro and explored their mol. mechanisms. We found that TPPU decreased WD-induced atherosclerotic plaque lesions, inflammation, expression of sEH, and NADP oxidase-4 (Nox4), and increased the expression of contractile phenotype marker of aortas in ApoE (-/-) mice. TPPU also inhibited homocysteine-stimulated VSMC proliferation, migration, and phenotypic switching, and reduced Nox4 in human-aorta-VSMC regulation. We conclude that TPPU has anti-atherosclerotic effects, potentially because of the suppression of VSMC phenotype switching. Thus, TPPU could be a potential therapeutic target for phenotypic switching attenuation in atherosclerosis. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Name: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Name: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Xu, Jiawen et al. published their research in Insect Biochemistry and Molecular Biology in 2015 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Application of 1222780-33-7

Epoxide hydrolase activities and epoxy fatty acids in the mosquito Culex quinquefasciatus was written by Xu, Jiawen;Morisseau, Christophe;Yang, Jun;Mamatha, Dadala M.;Hammock, Bruce D.. And the article was included in Insect Biochemistry and Molecular Biology in 2015.Application of 1222780-33-7 The following contents are mentioned in the article:

Culex mosquitoes have emerged as important model organisms for mosquito biol., and are disease vectors for multiple mosquito-borne pathogens, including West Nile virus. We characterized epoxide hydrolase activities in the mosquito Culex quinquefasciatus, which suggested multiple forms of epoxide hydrolases were present. We found EH activities on epoxy eicosatrienoic acids (EETs). EETs and other eicosanoids are well-established lipid signaling mols. in vertebrates. We showed EETs can be synthesized in vitro from arachidonic acids by mosquito lysate, and EETs were also detected in vivo both in larvae and adult mosquitoes by LC-MS/MS. The EH activities on EETs can be induced by blood feeding, and the highest activity was observed in the midgut of female mosquitoes. The enzyme activities on EETs can be inhibited by urea-based inhibitors designed for mammalian soluble epoxide hydrolases (sEH). The sEH inhibitors have been shown to play diverse biol. roles in mammalian systems, and they can be useful tools to study the function of EETs in mosquitoes. Besides juvenile hormone metabolism and detoxification, insect epoxide hydrolases may also play a role in regulating lipid signaling mols., such as EETs and other epoxy fatty acids, synthesized in vivo or obtained from blood feeding by female mosquitoes. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Application of 1222780-33-7).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Application of 1222780-33-7

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

He, Wanbing et al. published their research in Cell Death & Disease in 2021 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Formula: C16H20F3N3O3

Deletion of soluble epoxide hydrolase suppressed chronic kidney disease-related vascular calcification by restoring Sirtuin 3 expression was written by He, Wanbing;Huang, Jieping;Liu, Yang;Xie, Changming;Zhang, Kun;Zhu, Xinhong;Chen, Jie;Huang, Hui. And the article was included in Cell Death & Disease in 2021.Formula: C16H20F3N3O3 The following contents are mentioned in the article:

Vascular calcification is common in chronic kidney disease (CKD) and contributes to cardiovascular disease (CVD) without any effective therapies available up to date. The expression of soluble epoxide hydrolase (sEH) is different in patients with and without vascular calcification. The present study investigates the role of sEH as a potential mediator of vascular calcification in CKD. Both Ephx2-/- and wild-type (WT) mice fed with high adenine and phosphate (AP) diet were used to explore the vascular calcification in CKD. Compared with WT, deletion of sEH inhibited vascular calcification induced by AP. sEH deletion also abolished high phosphorus (Pi)-induced phenotypic transition of vascular smooth muscle cells (VSMCs) independent of its epoxyeicosatrienoic acids (EETs) hydrolysis. Further gene expression anal. identified the potential role of Sirtuin 3 (Sirt3) in the sEH-regulated VSMC calcification. Under high Pi treatment, sEH interacted with Sirt3, which might destabilize Sirt3 and accelerate the degradation of Sirt3. Deletion of sEH may preserve the expression of Sirt3, and thus maintain the mitochondrial ATP (ATP) synthesis and morphol., significantly suppressing VSMC calcification. Our data supported that sEH deletion inhibited vascular calcification and indicated a promising target of sEH inhibition in vascular calcification prevention. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Formula: C16H20F3N3O3).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Formula: C16H20F3N3O3

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Bettaieb, Ahmed et al. published their research in Molecular Pharmacology in 2015 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Name: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Soluble epoxide hydrolase pharmacological inhibition ameliorates experimental acute pancreatitis in mice was written by Bettaieb, Ahmed;Chahed, Samah;Bachaalany, Santana;Griffey, Stephen;Hammock, Bruce D.;Haj, Fawaz G.. And the article was included in Molecular Pharmacology in 2015.Name: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea The following contents are mentioned in the article:

Acute pancreatitis (AP) is an inflammatory disease, and is one of the most common gastrointestinal disorders worldwide. Soluble epoxide hydrolase (sEH; encoded by Ephx2) deficiency and pharmacol. inhibition have beneficial effects in inflammatory diseases. Ephx2 whole-body deficiency mitigates exptl. AP in mice, but the suitability of sEH pharmacol. inhibition for treating AP remains to be determined We investigated the effects of sEH pharmacol. inhibition on caerulein- and arginine-induced AP using the selective sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which was administered before and after induction of pancreatitis. Serum amylase and lipase levels were lower in TPPU-treated mice compared with controls. In addition, circulating levels and pancreatic mRNA of the inflammatory cytokines tumor necrosis factor-伪, interleukin Il-1尾, and Il-6 were reduced in TPPU-treated mice. Moreover, sEH pharmacol. inhibition before and after induction of pancreatitis was associated with decreased caerulein- and arginine-induced nuclear factor-魏B inflammatory response, endoplasmic reticulum stress, and cell death. sEH pharmacol. inhibition before and after induction of pancreatitis mitigated caerulein- and arginine-induced AP. This work suggests that sEH pharmacol. inhibition may be of therapeutic value in acute pancreatitis. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Name: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Name: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

He, Xin et al. published their research in International Journal of Biological Macromolecules in 2020 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising 伪-glucosidase inhibitors. The former are analogs of DNJ with an improved 伪-glucosidase inhibitory profile than that of DNJ. Boisson et al.Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Natural soluble epoxide hydrolase inhibitors from Inula helenium and their interactions with soluble epoxide hydrolase was written by He, Xin;Zhao, Wen-Yu;Shao, Bo;Zhang, Bao-Jing;Liu, Tian-Tian;Sun, Cheng-Peng;Huang, Hui-Lian;Wu, Jia-Rong;Liang, Jia-Hao;Ma, Xiao-Chi. And the article was included in International Journal of Biological Macromolecules in 2020.Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea The following contents are mentioned in the article:

The inhibition of soluble epoxide hydrolase (sEH) is regarded as a promising therapeutic approach to treat inflammation and its related disorders. In present work, we investigated inhibitory effects of forty-nine kinds of traditional Chinese medicines against sEH. Inula helenium showed significant inhibitory effect against sEH, and the extract of I. helenium was isolated to obtain eight compounds, including 4H-tomentosin (1), xanthalongin (2), linoleic acid (3), 8-hydroxy-9-isobutyryloxy-10(2)-methylbutyrylthymol (4), dehydrocostus lactone (5), alantolactone (6), costunolide (7), and isoalantolactone (8). Among them, 4H-tomentosin (1), xanthalongin (2), and linoleic acid (3) showed significantly inhibitory activities on sEH with half maximal inhibitory concentration (IC50) from 5.88 卤 0.97渭M to 11.63 卤 0.58渭M. The inhibition kinetics suggested that 4H-tomentosin (1) and xanthalongin (2) were mixed-competitive type inhibitors with inhibition constants (Ki) of 7.02 and 6.57渭 M, resp., and linoleic acid (3) was a competitive type inhibitor with a Ki values of 3.52渭M. The potential interactions of 4H-tomentosin (1), xanthalongin (2), and linoleic acid (3) with sEH were analyzed by mol. docking, which indicated that these bioactive compounds had interactions with key amino acid residues Tyr343, Ile363, Tyr383, and His524. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising 伪-glucosidase inhibitors. The former are analogs of DNJ with an improved 伪-glucosidase inhibitory profile than that of DNJ. Boisson et al.Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ghosh, Anamitra et al. published their research in Science Translational Medicine in 2020 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

An epoxide hydrolase inhibitor reduces neuroinflammation in a mouse model of Alzheimers disease was written by Ghosh, Anamitra;Comerota, Michele M.;Wan, Debin;Chen, Fading;Propson, Nicholas E.;Hwang, Sung Hee;Hammock, Bruce D.;Zheng, Hui. And the article was included in Science Translational Medicine in 2020.Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea The following contents are mentioned in the article:

Neuroinflammation has been increasingly recognized to play a critical role in Alzheimers disease (AD). The epoxy fatty acids (EpFAs) are derivatives of the arachidonic acid metabolism pathway and have anti-inflammatory activities. However, their efficacy is limited because of their rapid hydrolysis by the soluble epoxide hydrolase (sEH). We report that sEH is predominantly expressed in astrocytes and is elevated in postmortem brain tissue from patients with AD and in the 5xFAD βamyloid mouse model of AD. The amount of sEH expressed in AD mouse brains correlated with a reduction in brain EpFA concentrations Using a specific small-mol. sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), we report that TPPU treatment protected wild-type mice against LPS-induced inflammation in vivo. Long-term administration of TPPU to the 5xFAD mouse model via drinking water reversed microglia and astrocyte reactivity and immune pathway dysregulation. This was associated with reduced β amyloid pathol. and improved synaptic integrity and cognitive function on two behavioral tests. TPPU treatment correlated with an increase in EpFA concentrations in the brains of 5xFAD mice, demonstrating brain penetration and target engagement of this small mol. These findings support further investigation of TPPU as a potential therapeutic agent for the treatment of AD. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Trindade-da-Silva, Carlos Antonio et al. published their research in Journal of Pharmacology and Experimental Therapeutics in 2017 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.HPLC of Formula: 1222780-33-7

Soluble epoxide hydrolase pharmacological inhibition decreases alveolar bone loss by modulating host inflammatory response, RANK-related signaling, endoplasmic reticulum stress, and apoptosis was written by Trindade-da-Silva, Carlos Antonio;Bettaieb, Ahmed;Napimoga, Marcelo Henrique;Lee, Kin Sing Stephen;Inceoglu, Bora;Ueira-Vieira, Carlos;Bruun, Donald;Goswami, Sumanta Kumar;Haj, Fawaz G.;Hammock, Bruce D.. And the article was included in Journal of Pharmacology and Experimental Therapeutics in 2017.HPLC of Formula: 1222780-33-7 The following contents are mentioned in the article:

Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid derived from the cytochrome P 450 enzymes, are mainly metabolized by soluble epoxide hydrolase (sEH) to their corresponding diols. EETs but not their diols, have anti-inflammatory properties, and inhibition of sEH might provide protective effects against inflammatory bone loss. Thus, in the present study, we tested the selective sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), in a mouse model of periodontitis induced by infection with Aggregatibacter actinomycetemcomitans. Oral treatment of wild-type mice with TPPU and sEH knockout (KO) animals showed reduced bone loss induced by A. actinomycetemcomitans. Thiswas associated with decreased expression of key osteoclastogenic mols., receptor activator of nuclear factor-κB/RANK ligand/osteoprotegerin, and the chemokine monocyte chemotactic protein 1 in the gingival tissue without affecting bacterial counts. In addition, downstream kinases p38 and c-Jun N-terminal kinase known to be activated in response to inflammatory signals were abrogated after TPPU treatment or in sEH KO mice. Moreover, endoplasmic reticulum stress was elevated in periodontal disease but was abrogated after TPPU treatment and in sEH knockout mice. Together, these results demonstrated that sEH pharmacol. inhibition may be of therapeutic value in periodontitis. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7HPLC of Formula: 1222780-33-7).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.HPLC of Formula: 1222780-33-7

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Tsai, Hsing-Ju et al. published their research in European Journal of Pharmaceutical Sciences in 2010 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Formula: C16H20F3N3O3

Pharmacokinetic screening of soluble epoxide hydrolase inhibitors in dogs was written by Tsai, Hsing-Ju;Hwang, Sung Hee;Morisseau, Christophe;Yang, Jun;Jones, Paul D.;Kasagami, Takeo;Kim, In-Hae;Hammock, Bruce D.. And the article was included in European Journal of Pharmaceutical Sciences in 2010.Formula: C16H20F3N3O3 The following contents are mentioned in the article:

Epoxyeicosatrienoic acids that have anti-hypertensive and anti-inflammatory properties are mainly metabolized by soluble epoxide hydrolase (sEH, EC 3.3.2.3). Therefore, sEH has emerged as a therapeutic target for treating various cardiovascular diseases and inflammatory pain. N,N’-Disubstituted ureas are potent sEH inhibitors in vitro. However, in vivo usage of early sEH inhibitors has been limited by their low bioavailability and poor physiochem. properties. Therefore, a group of highly potent compounds with more drug-like physiochem. properties were evaluated by monitoring their plasma profiles in dogs treated orally with sEH inhibitors. Urea compounds with an adamantyl or a 4-trifluoromethoxyphenyl group on one side and a piperidyl or a cyclohexyl ether group on the other side of the urea function showed pharmacokinetic profiles with high plasma concentrations and long half lives. In particular, the inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) not only is very potent with good physiochem. properties, but also shows high oral bioavailability for doses ranging from 0.01 to 1 mg/kg. This compound is also very potent against the sEH of several mammals, suggesting that t-AUCB will be an excellent tool to evaluate the biol. of sEH in multiple animal models. Such compounds may also be a valuable lead for the development of veterinary therapeutics. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Formula: C16H20F3N3O3).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Formula: C16H20F3N3O3

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Huerta-Yepez, Sara et al. published their research in Scientific Reports in 2020 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Quality Control of 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Aryl Hydrocarbon Receptor-Dependent inductions of omega-3 and omega-6 polyunsaturated fatty acid metabolism act inversely on tumor progression was written by Huerta-Yepez, Sara;Tirado-Rodriguez, Ana;Montecillo-Aguado, Mayra R.;Yang, Jun;Hammock, Bruce D.;Hankinson, Oliver. And the article was included in Scientific Reports in 2020.Quality Control of 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea The following contents are mentioned in the article:

Abstract: The Western diet contains a high ratio of omega-6 (ω6) to omega-3 (ω3) polyunsaturated fatty acids (PUFA). The prototypical aryl hydrocarbon receptor (AHR) ligand, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), induces CYP1 family enzymes, which can metabolize PUFA to epoxides. Mice fed ω3-rich or ω6-rich diets were treated with TCDD and injected s.c. with AHR-competent Hepa1-GFP hepatoma cells or AHR-deficient LLC lung cancer cells. TCDD reduced the growth rates of the resulting tumors in ω3-fed mice and inhibited their metastasis to the liver and/or lung, but had the opposite effects in mice fed ω6 PUFA. These responses were likely attributable to the corresponding PUFA epoxides generated in tumor cells and/or host, since many depended upon co-administration of a soluble epoxide hydrolase (EPHX2) inhibitor in males, and/or were associated with increases in epoxide levels in tumors and sites of metastasis. Equivalent effects occurred in females in the absence of EPHX2 inhibition, probably because this sex expressed reduced levels of EPHX2. The responses elicited by TCDD were associated with effects on tumor vascularity, tumor cell proliferation and/or apoptosis. Thus environmental AHR agonists, and potentially also endogenous, nutritional, and microbiome-derived agonists, may reduce or enhance cancer progression depending on the composition of dietary PUFA, particularly in females. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Quality Control of 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Quality Control of 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem