Structural and drug screening analysis of the non-structural proteins of severe acute respiratory syndrome coronavirus 2 virus extracted from Indian coronavirus disease 2019 patients was written by Biswas, Nupur;Kumar, Krishna;Mallick, Priyanka;Das, Subhrangshu;Kamal, Izaz monir;Bose, Sarpita;Choudhury, Anindita;Chakrabarti, Saikat. And the article was included in Frontiers in Genetics in 2021.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:
The novel coronavirus 2 (nCoV2) outbreaks took place in Dec. 2019 in Wuhan City, Hubei Province, China. It continued to spread worldwide in an unprecedented manner, bringing the whole world to a lockdown and causing severe loss of life and economic stability. The coronavirus disease 2019 (COVID-19) pandemic has also affected India, infecting more than 10 million till 31st Dec. 2020 and resulting in more than a hundred thousand deaths. In the absence of an effective vaccine, it is imperative to understand the phenotypic outcome of the genetic variants and subsequently the mode of action of its proteins with respect to human proteins and other bio-mols. Availability of a large number of genomic and mutational data extracted from the nCoV2 virus infecting Indian patients in a public repository provided an opportunity to understand and analyze the specific variations of the virus in India and their impact in broader perspectives. Non-structural proteins (NSPs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus play a major role in its survival as well as virulence power. Here, the authors provide a detailed overview of the SARS-CoV2 NSPs including primary and secondary structural information, mutational frequency of the Indian and Wuhan variants, phylogenetic profiles, three-dimensional (3D) structural perspectives using homol. modeling and mol. dynamics analyses for wild-type and selected variants, host-interactome anal. and viral-host protein complexes, and in silico drug screening with known antivirals and other drugs against the SARS-CoV2 NSPs isolated from the variants found within Indian patients across various regions of the country. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).
2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid
Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem