Analyzing the synthesis route of 885279-92-5

As the paragraph descriping shows that 885279-92-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.885279-92-5,1-Boc-1,8-diaza-spiro[4.5]decane,as a common compound, the synthetic route is as follows.

1002151 A flask was charged with 4-nitrophenyl 3-methanesulfonamido-1H-pyrazole-1-carboxylate (3.65 g, 11.2 mmol, 1.00 equiv), DCM (40 mL), t-butyl 1,8-diazaspiro[4.5]decane-1-carboxylate (3.24 g, 13.5 mmol, 1.20 equiv), and triethylamine (3.39 g, 33.6 mmol, 3.00 equiv). The resulting solution was stirred overnight at room temperature and quenched with water (50 mL). The resulting solution was extracted with DCM (2 x 80 mL) and the organic layers were combined, washed with brine (2 x 50 mL), dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was chromatographed on a silica gel column to provide 3.46 g (72% yield) of t-butyl 8-(3 -(methyl sulfonamido)- 1 H-pyrazole- 1 -carbonyl)- 1, 8-diazaspiro[4.5] decane- 1- carboxylate as a yellow solid. LCMS (ESI, m/z): 428 [M+H]., 885279-92-5

As the paragraph descriping shows that 885279-92-5 is playing an increasingly important role.

Reference:
Patent; ABIDE THERAPEUTICS, INC.; GRICE, Cheryl A.; WEBER, Olivia D.; BUZARD, Daniel J.; SHAGHAFI, Michael B.; WIENER, John J. M.; CISAR, Justin S.; DUNCAN, Katharine K.; (324 pag.)WO2018/217809; (2018); A1;,
Piperidine – Wikipedia
Piperidine | C5H11N – PubChem