Zhang, Zhe team published research on Journal of Enzyme Inhibition and Medicinal Chemistry in 2021 | 5382-16-1

Application In Synthesis of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Application In Synthesis of 5382-16-1.

Zhang, Zhe;Zhang, Zhao-Sheng;Wang, Xiao;Xi, Gao-Lei;Jin, Zhen;Tang, You-Zhi research published 《 A click chemistry approach to pleuromutilin derivatives, evaluation of anti-MRSA activity and elucidation of binding mode by surface plasmon resonance and molecular docking》, the research content is summarized as follows. A series of pleuromutilin analogs containing substituted 1,2,3-triazole moieties I [R1 = Me, Ph, 3-fluorophenyl, etc.] and II [R2 = R3 = Me, cyclohexyl, etc.] were designed, synthesized and assessed for their in vitro antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA). Initially, the in vitro antibacterial activities of these derivatives against 4 strains of S. aureus (MRSA ATCC 43300, ATCC 29213, AD3, and 144) were tested by the broth dilution method. Most of the synthesized pleuromutilin analogs displayed potent activities. Among them, compounds I [R1 = 2-methylphenyl, 2-nitrophenyl, 4-nitrophenyl] (MIC = 0.5∼1 μg/mL) showed the most effective antibacterial activity and their anti-MRSA activity were further studied by the time-killing kinetics approach. Binding mode investigations by surface plasmon resonance (SPR) with 50S ribosome revealed that the selected compounds all showed obvious affinity for 50S ribosome (KD = 2.32 x 10-8∼5.10 x 10-5 M). Subsequently, the binding of compounds I [R1 = 2-methylphenyl, 4-nitrophenyl] to the 50S ribosome was further investigated by mol. modeling. Compound I [R1 = 2-methylphenyl] had a superior docking mode with 50S ribosome, and the binding free energy of compound was calculated to be -12.0 kcal/mol.

Application In Synthesis of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem