Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Application of C5H11NO.
Zhang, Yang;Chen, Wanting;Li, Tiantian;Yan, Xiaoming;Zhang, Fan;Wang, Xiaozhou;Wu, Xuemei;Pang, Bo;He, Gaohong research published 《 A rod-coil grafts strategy for N-spirocyclic functionalized anion exchange membranes with high fuel cell power density》, the research content is summarized as follows. N-spirocyclic cations possess double-cyclic non-planar structure that exhibit the highest alkali stability among quaternary ammonium cations, however, the extremely rigidity usually causes fragile membranes and poor conductivity In this work, a rod-coil grafts design is proposed for N-spirocyclic anion exchange membranes (AEMs), in which microphase separation of the hydrophilic N-spirocyclic rod grafts is significantly improved by the hydrophobic aggregation of the flexible alkyl coil grafts with polysulfone backbone. Mol. dynamic simulations indicate that the coil grafts contribute to microphase separation but fill in free volume to reduce water reservoir, therefore the rod-coil grafts design provides a way to evaluate the effects of microphase separation and free volume on conductivity The increasing conductivity with the length of coil grafts suggests a greater contribution of good microphase separation to OH- conduction. With optimized n-octylamine hydrophobic coil graft length, the N-spirocyclic AEM exhibits toughness (elongation at break of about 28.7%) and high OH- conductivity (136.2 mS cm-1 at 80°C), resulting in high power d. (850.1 mW cm-2), which is far greater than that assemble with other N-spirocyclic AEMs, and also bring N-spirocyclic AEMs into the top level of the cycloaliphatic AEMs reported in literatures.
Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.
Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem