Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. SDS of cas: 5382-16-1.
Yu, Ming-cheng;Yang, Feng;Ding, Xiao-yu;Sun, Nan-nan;Jiang, Zheng-yuan;Huang, Ya-fei;Yan, Yu-rong;Zhu, Chen;Xie, Qiong;Chen, Zhi-feng;Guo, Si-qi;Jiang, Hua-liang;Chen, Kai-xian;Luo, Cheng;Luo, Xiao-min;Chen, Shi-jie;Wang, Yong-hui research published 《 Crystallography-guided discovery of carbazole-based retinoic acid-related orphan receptor gamma-t (RORγt) modulators: insights into different protein behaviors with “short” and “long” inverse agonists》, the research content is summarized as follows. A series of 6-substituted carbazole-based retinoic acid-related orphan receptor gamma-t (RORγt) modulators were discovered through 6-position modification guided by insights from the crystallog. profiles of the “short” inverse agonist 6. With the increase in the size of the 6-position substituents, the “short” inverse agonist 6 first reversed its function to agonists and then to “long” inverse agonists. The cocrystal structures of RORγt complexed with the representative “short” inverse agonist 6 (PDB: 6LOB), the agonist 7d (PDB: 6LOA) and the “long” inverse agonist 7h (PDB: 6LO9) were revealed by X-ray anal. However, minor differences were found in the binding modes of “short” inverse agonist 6 and “long” inverse agonist 7h. To further reveal the mol. mechanisms of different RORγt inverse agonists, we performed mol. dynamics simulations and found that “short” or “long” inverse agonists led to different behaviors of helixes H11, H11′, and H12 of RORγt. The “short” inverse agonist 6 destabilizes H11′ and dislocates H12, while the “long” inverse agonist 7h separates H11 and unwinds H12. The results indicate that the two types of inverse agonists may behave differently in downstream signaling, which may help identify novel inverse agonists with different regulatory mechanisms.
SDS of cas: 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.
Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem