Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Safety of 2,2,6,6-Tetramethyl-4-piperidinol.
Wang, Jingwen;Wan, Ying;Ding, Jiaqi;Wang, Zongping;Ma, Jun;Xie, Pengchao;Wiesner, Mark R. research published 《 Thermal activation of peracetic acid in aquatic solution: The mechanism and application to degrade sulfamethoxazole》, the research content is summarized as follows. Chem. oxidation using peracetic acid (PAA) can be enhanced by activation with the formation of reactive species such as organic radicals (R-O•) and HO•. Thermal activation is an alternative way for PAA activation, which was first applied to degrade micropollutants in this study. PAA is easily decomposed by heat via both radical and nonradical pathways. Our exptl. results suggest that a series of reactive species including R-O•, HO•, and 1O2 can be produced through the thermal decomposition of PAA. Sulfamethoxazole (SMX), a typical sulfa drug, can be effectively removed by the thermoactivated PAA process under conditions of neutral pH. R-O• including CH3C(O)O• and CH3C(O)OO• has been shown to play a primary role in the degradation of SMX followed by direct PAA oxidation in the thermoactivated PAA process. Both higher temperature (60°C) and higher PAA dose benefit SMX degradation, while coexisting H2O2 inhibits SMX degradation in the thermoactivated PAA process. With a variation of solution pH, conditions near a neutral value show the best performance of this process in SMX degradation Based on the identified intermediates, transformation of SMX was proposed to undergo oxidation of the amine group and oxidative coupling reactions. This study definitively illustrates the PAA decomposition pathways at high temperature in aquatic solution and addresses the possibility of the thermoactivated PAA process for contaminant destruction, demonstrating this process to be a feasible advanced oxidation process.
2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Safety of 2,2,6,6-Tetramethyl-4-piperidinol
Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem