Ni, Tingjunhong team published research on Molecules in 2022 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Recommanded Product: 4-Piperidinol

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Recommanded Product: 4-Piperidinol.

Ni, Tingjunhong;Ding, Zichao;Xie, Fei;Hao, Yumeng;Bao, Junhe;Zhang, Jingxiang;Yu, Shichong;Jiang, Yuanying;Zhang, Dazhi research published 《 Design, Synthesis, and In Vitro and In Vivo Antifungal Activity of Novel Triazoles Containing Phenylethynyl Pyrazole Side Chains》, the research content is summarized as follows. A series of triazole derivatives containing phenylethynyl pyrazole moiety as side chain I (R = 4-fluorobenzylaminyl, 4-hydroxypiperidin-1-yl, morpholin-4-yl, etc.) and II (R1 = F, Cl, CN, CF3, OCF3) were designed, synthesized, and most of them exhibited good in vitro antifungal activities. Especially, triazole derivatives I (R = (furan-2-ylmethyl)aminyl) and II (R1 = CN) showed excellent in vitro activities against C. albicans (MIC = 0.125, 0.0625μg/mL), C. neoformans (MIC = 0.125, 0.0625μg/mL), and A. fumigatus (MIC = 8.0, 4.0μg/mL). Triazole derivatives II (R1 = CN) also exerted superior activity to triazole derivatives I (R = (furan-2-ylmethyl)aminyl) and fluconazole in inhibiting hyphae growth of C. albicans and inhibiting drug-resistant strains of C. albicans, and it could reduce fungal burdens in mice kidney at a dosage of 1.0 mg/kg. An in vivo efficacy evaluation indicated that triazole derivatives II (R1 = CN) could effectively protect mice models from C. albicans infection at doses of 0.5, 1.0, and 2.0 mg/kg. These results suggested that triazole derivatives II (R1 = CN) deserves further investigation.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Recommanded Product: 4-Piperidinol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem