Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C was written by Poreba, Marcin;Mihelic, Marko;Krai, Priscilla;Rajkovic, Jelena;Krezel, Artur;Pawelczak, Malgorzata;Klemba, Michael;Turk, Dusan;Turk, Boris;Latajka, Rafal;Drag, Marcin. And the article was included in Amino Acids in 2014.Quality Control of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:
Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the Hb of its host erythrocyte. In this report, we describe the systematic substrate specificity anal. of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Addnl., in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Quality Control of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).
(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Quality Control of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid
Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem