Foerster resonance energy transfer competitive displacement assay for human soluble epoxide hydrolase was written by Lee, Kin Sing Stephen;Morisseau, Christophe;Yang, Jun;Wang, Peng;Hwang, Sung Hee;Hammock, Bruce D.. And the article was included in Analytical Biochemistry in 2013.HPLC of Formula: 1222780-33-7 The following contents are mentioned in the article:
The soluble epoxide hydrolase (sEH), responsible for the hydrolysis of various fatty acid epoxides to their corresponding 1,2-diols, is becoming an attractive pharmaceutical target. These fatty acid epoxides, particularly epoxyeicosatrienoic acids (EETs), play an important role in human homeostatic and inflammation processes. Therefore, inhibition of human sEH, which stabilizes EETs in vivo, brings several beneficial effects to human health. Although there are several catalytic assays available to determine the potency of sEH inhibitors, measuring the in vitro inhibition constant (Ki) for these inhibitors using catalytic assay is laborious. In addition, koff, which has been recently suggested to correlate better with the in vivo potency of inhibitors, has never been measured for sEH inhibitors. To better measure the potency of sEH inhibitors, a reporting ligand, 1-(adamantan-1-yl)-3-(1-(2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetyl) piperidin-4-yl)urea (ACPU), was designed and synthesized. With ACPU, we have developed a Foerster resonance energy transfer (FRET)-based competitive displacement assay using intrinsic tryptophan fluorescence from sEH. In addition, the resulting assay allows us to measure the Ki values of very potent compounds to the picomolar level and to obtain relative koff values of the inhibitors. This assay provides addnl. data to evaluate the potency of sEH inhibitors. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7HPLC of Formula: 1222780-33-7).
1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.HPLC of Formula: 1222780-33-7
Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem