Distinct roles of honeybee gut bacteria on host metabolism and neurological processes was written by Zhang, Zijing;Mu, Xiaohuan;Shi, Yao;Zheng, Hao. And the article was included in Microbiology Spectrum in 2022.Computed Properties of C32H39NO4 The following contents are mentioned in the article:
The honeybee possesses a limited number of bacterial phylotypes that play essential roles in host metabolism, hormonal signaling, and feeding behavior. However, the contribution of individual gut members in shaping honeybee brain profiles remains unclear. By generating gnotobiotic bees which were mono-colonized by a single gut bacterium, we revealed that different species regulated specific modules of metabolites in the hemolymph. Circulating metabolites involved in carbohydrate and glycerophospholipid metabolism pathways were mostly regulated by Gilliamella, while Lactobacillus Firm4 and Firm5 mainly altered amino acid metabolism pathways. We then analyzed the brain transcriptomes of bees mono-colonized with these three bacteria. These showed distinctive gene expression profiles, and genes related to olfactory functions and labor division were upregulated by Lactobacillus. Interestingly, differentially spliced genes in the brains of gnotobiotic bees largely overlapped with those of bees unresponsive to social stimuli. The differentially spliced genes were enriched in pathways involved in neural development and synaptic transmission. We showed that gut bacteria altered neurotransmitter levels in the brain. In particular, dopamine and serotonin, which show inhibitory effects on the sensory sensitivity of bees, were downregulated in bacteria-colonized bees. The proboscis extension response showed that a normal gut microbiota is essential for the taste-related behavior of honeybees, suggesting the contribution of potential interactions among different gut species to the host′s physiol. Our findings provide fundamental insights into the diverse functions of gut bacteria which likely contribute to honeybee neurol. processes. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Computed Properties of C32H39NO4).
2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Computed Properties of C32H39NO4
Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem