Synthetic Route of C9H17NOOn October 1, 2021 ,《Highly-efficient and stable MgCo2O4 spinel for bisphenol a removal by activating peroxymonosulfate via radical and non-radical pathways》 was published in Chemical Engineering Journal (Amsterdam, Netherlands). The article was written by Yu, Jiaxin; Qiu, Wei; Xu, Haodan; Lu, Xiaohui; Ma, Jun; Lu, Dongwei. The article contains the following contents:
Nowadays, the limited catalytic efficiency, secondary pollution of metal leaching and stability decrease during reuse bring challenges to practical application of heterogeneous catalysts in sulfate radical-based advanced oxidation processes. Herein, MgCo2O4 spinel was synthesized through hydrothermal method and tested for its catalytic performance of activating PMS by using bisphenol A (BPA) as the target pollutant. MgCo2O4/PMS system can degrade 99.6% BPA efficiently at pH 7.2 within 10 min. The morphol. and physicochem. properties of MgCo2O4 were characterized by SEM (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Unlike conventional PMS activation, radical and non-radical pathways were identified through utilizing XPS, ESR (EPR), and radical quenching experiments Tetrahedral Mg2+ might make MgCo2O4 more stable and promote the Co2+/Co3+ redox, which dominated the catalytic ability of MgCo2O4. MgCo2O4 spinel is efficient, stable, low-cost, and simple to synthesize, leading to BPA degradation via both radical and non-radical pathways. This research would extend the mechanism and potential application of spinel catalysis in water treatment. After reading the article, we found that the author used Triacetonamine(cas: 826-36-8Synthetic Route of C9H17NO)
Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Synthetic Route of C9H17NO
Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem