Wang, Yujiao; Wang, Li; Ma, Fang; You, Yongqiang published an article in Chemical Engineering Journal (Amsterdam, Netherlands). The title of the article was 《FeOx@graphitic carbon core-shell embedded in microporous N-doped biochar activated peroxydisulfate for removal of Bisphenol A: Multiple active sites induced non-radical/radical mechanism》.Name: Triacetonamine The author mentioned the following in the article:
The development of novel carbocatalysts with high activity and stability is important for the rapid degradation of emerging pollutants. Fe/N co-doped biochar (FeOx@GC-NBC) was innovatively synthesized with a pyrolytic carbonization method and then used as a functional peroxydisulfate (PDS) activator to degrade Bisphenol A (BPA). FeOx@GC-NBC with an optimized Fe/N ratio modification exhibited 23.16 and 8.65-fold great activity for BPA removal compared to pristine BC and N-doped BC, resp. Approx. 93% of total organic carbon (TOC) could be removed in the heterogeneous activation system. We attributed the excellent performance of FeOx@GC-NBC to the following attributes: i) a microporous carbon matrix with larger sp. surface area (1691.81 m2·g-1) was favorable for adsorption, exposure of catalyst active sites (e.g., Fe-Nx, Graphitic N) and electron-transfer; ii) the C-O-Fe bond and highly core-shell structure of graphitic nanosheets (FeOx@GC) enhanced the N retention ability and durability of the catalyst; iii) organics adsorption dominated by a “”pore-filling and π-π interaction”” mechanism effectively promoted BPA oxidation In acidic and neutral solutions, the radical oxidation (SO·-4and ·OH) processes were responsible for BPA decomposition In alk. solution, electron transfer, instead of 1O2 or a high-valent iron species, was the dominant pathway. This study proposes a simple and feasible strategy to synthesize the FeOx@GC-NBC catalyst, which provides insights into catalyst design and the internal active sites involved in the purification mechanism of refractory organics The experimental part of the paper was very detailed, including the reaction process of Triacetonamine(cas: 826-36-8Name: Triacetonamine)
Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Name: Triacetonamine
Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem