Dong, Yuxiang’s team published research in Journal of Medicinal Chemistry in 60 | CAS: 39546-32-2

Journal of Medicinal Chemistry published new progress about 39546-32-2. 39546-32-2 belongs to piperidines, auxiliary class Piperidine,Amine,Amide, name is Piperidine-4-carboxamide, and the molecular formula is C6H12N2O, Quality Control of 39546-32-2.

Dong, Yuxiang published the artcileStructure-Activity Relationship of the Antimalarial Ozonide Artefenomel (OZ439), Quality Control of 39546-32-2, the publication is Journal of Medicinal Chemistry (2017), 60(7), 2654-2668, database is CAplus and MEDLINE.

Building on insights gained from the discovery of the antimalarial ozonide arterolane (OZ277), we now describe the structure-activity relationship (SAR) of the antimalarial ozonide artefenomel (OZ439). Primary and secondary amino ozonides had higher metabolic stabilities than tertiary amino ozonides, consistent with their higher pKa and lower log D7.4 values. For primary amino ozonides, addition of polar functional groups decreased in vivo antimalarial efficacy. For secondary amino ozonides, addnl. functional groups had variable effects on metabolic stability and efficacy, but the most effective members of this series also had the highest log D7.4 values. For tertiary amino ozonides, addition of polar functional groups with H-bond donors increased metabolic stability but decreased in vivo antimalarial efficacy. Primary and tertiary amino ozonides with cycloalkyl and heterocycle substructures were superior to their acyclic counterparts. The high curative efficacy of these ozonides was most often associated with high and prolonged plasma exposure, but exposure on its own did not explain the presence or absence of either curative efficacy or in vivo toxicity.

Journal of Medicinal Chemistry published new progress about 39546-32-2. 39546-32-2 belongs to piperidines, auxiliary class Piperidine,Amine,Amide, name is Piperidine-4-carboxamide, and the molecular formula is C6H12N2O, Quality Control of 39546-32-2.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Huang, Zhiyan’s team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 369 | CAS: 826-36-8

Chemical Engineering Journal (Amsterdam, Netherlands) published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, COA of Formula: C9H17NO.

Huang, Zhiyan published the artcileCoagulation treatment of swine wastewater by the method of in-situ forming layered double hydroxides and sludge recycling for preparation of biochar composite catalyst, COA of Formula: C9H17NO, the publication is Chemical Engineering Journal (Amsterdam, Netherlands) (2019), 784-792, database is CAplus.

In order to achieve enhanced treatment of swine wastewater as well as resource recycle, in this work, we applied coagulation treatment on swine wastewater by adding Fe and Mg ions, MgFe layered double hydroxides (LDHs) was yielded during coagulation process and the coagulation sludge was recycled to prepare biochar composite catalyst. The removal rates of total phosphorus (TP) and COD (COD) by Mg-Fe coagulation could achieve 82.55% and 98.51%, which is higher than that by coagulation with individual Mg2+ or individual Fe3+. Finely dispersed MgFe-LDHs flocculation was formed during the coagulation process and was embedded within zoogloea, suspended particles, organic matters, etc. The obtained coagulation sludge was recycled to prepare biochar composite catalyst by oxygen-limited pyrolysis. Redox reaction of iron compounds and electron shuttles capacity of biochar in the catalyst could activate potassium peroxymonosulfate (PMS) to generate ·OH, ·OOH and 1O2, which was responsible for catalysis potential. The as-prepared biochar composite catalyst showed satisfactory catalytic degradation capacity on tylosin and rhodamine B (pH value varied from 3 to 10), and the maximum degradation rate achieved 92.2% for tylosin and 81.9% for rhodamine B (RhB). Coagulation treatment of swine wastewater and in-situ formed layered double hydroxides recycling was suitable in wastewater treatment and resource recycling, of which the degradation rates of RhB were above 83% after five cycling experiments In general, the combined process exhibits great potential for the deep treatment of swine wastewater and resource recycling for sludge.

Chemical Engineering Journal (Amsterdam, Netherlands) published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, COA of Formula: C9H17NO.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Wu, Chun-Feng’s team published research in European Journal of Medicinal Chemistry in 229 | CAS: 39546-32-2

European Journal of Medicinal Chemistry published new progress about 39546-32-2. 39546-32-2 belongs to piperidines, auxiliary class Piperidine,Amine,Amide, name is Piperidine-4-carboxamide, and the molecular formula is C9H9BO2, HPLC of Formula: 39546-32-2.

Wu, Chun-Feng published the artcileSynthesis and bioevaluation of diaryl urea derivatives as potential antitumor agents for the treatment of human colorectal cancer, HPLC of Formula: 39546-32-2, the publication is European Journal of Medicinal Chemistry (2022), 114055, database is CAplus and MEDLINE.

The development of inhibitors targeting the PI3K-Akt-mTOR signaling pathway has been greatly hindered by the on-target AEs, such as hyperglycemia and hepatotoxicities. In this study, a series of diaryl urea derivatives has been designed and synthesized based on clin. candidate gedatolisib, and most of the newly synthesized derivatives showed kinase inhibitory and antiproliferative activities within nanomolar and submicromolar level, resp. The terminal L-proline amide substituted derivative I showed 8.6-fold more potent PI3Kα inhibitory activity (0.7 nM) and 4.6-fold more potent antiproliferative effect against HCT116 cell lines (0.11μM) compared with control gedatolisib. The potential antitumor mechanism and efficacy of I in HCT116 xenograft models have also been evaluated, and found I showed comparable in vivo antitumor activity with gedatolisib. The safety investigations revealed that compound I exhibited more safer profiles in the selectivity of liver cells (selectivity index: >6.6 vs 1.85) and blood glucose regulation than gedatolisib. In addition, the in vitro stability assays also indicated that developed compound I possessed good metabolic stabilities.

European Journal of Medicinal Chemistry published new progress about 39546-32-2. 39546-32-2 belongs to piperidines, auxiliary class Piperidine,Amine,Amide, name is Piperidine-4-carboxamide, and the molecular formula is C9H9BO2, HPLC of Formula: 39546-32-2.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Long, Jiao’s team published research in iScience in 22 | CAS: 39546-32-2

iScience published new progress about 39546-32-2. 39546-32-2 belongs to piperidines, auxiliary class Piperidine,Amine,Amide, name is Piperidine-4-carboxamide, and the molecular formula is C6H12N2O, Safety of Piperidine-4-carboxamide.

Long, Jiao published the artcileNickel/Bronsted Acid-Catalyzed Chemo- and Enantioselective Intermolecular Hydroamination of Conjugated Dienes, Safety of Piperidine-4-carboxamide, the publication is iScience (2019), 369-379, database is CAplus and MEDLINE.

A novel nickel/Bronsted acid-catalyzed asym. hydroamination of acyclic 1,3-dienes was established. A wide array of primary and secondary amines were transformed into allylic amines with high yields and high enantioselectivities under very mild conditions. Moreover, this method was compatible with various functional groups and heterocycles, allowing for late-stage functionalization of biol. active complex mols. Remarkably, this protocol exhibited good chemoselectivity with respect to amines bearing two different nucleophilic sites. Mechanistic studies revealed that the enantioselective carbon-nitrogen bond-forming step was reversible.

iScience published new progress about 39546-32-2. 39546-32-2 belongs to piperidines, auxiliary class Piperidine,Amine,Amide, name is Piperidine-4-carboxamide, and the molecular formula is C6H12N2O, Safety of Piperidine-4-carboxamide.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

He, Yuan’s team published research in Science of the Total Environment in 785 | CAS: 826-36-8

Science of the Total Environment published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, Formula: C9H17NO.

He, Yuan published the artcileCatalytic ozonation for metoprolol and ibuprofen removal over different MnO2 nanocrystals: Efficiency, transformation and mechanism, Formula: C9H17NO, the publication is Science of the Total Environment (2021), 147328, database is CAplus and MEDLINE.

Manganese dioxide has been widely recognized as catalyst in catalytic ozonation for organic pollutants removal from wastewater in recent decades. However, few studies focus on the structure-activity relationship of MnO2 and catalytic ozonation mechanism in water. In the present study, the oxidative reactivity of three different crystal phases of MnO2 corresponding to α-MnO2, β-MnO2 and γ-MnO2 towards metoprolol (MET) and ibuprofen (IBU) were evaluated. α-MnO2 was found to contain the most abundant oxygen vacancy and readily reducible surface adsorbed oxygen (O2-, O, OH), which facilitated an increase of ozone utilization and the highest catalytic performance with 99% degradation efficiency for IBU and MET. α-MnO2 was then selected to investigate the optimum key operating parameters with a result of catalyst dosage 0.1 g/L, ozone dosage 1 mg/min and an initial pH 7. The introduction of α-MnO2 promoted reactive oxygen species (O2-, O, OH) generation which played significant roles in IBU degradation Probable degradation pathways of MET and IBU were proposed according to the organic intermediates identified and the reaction sites based on d. function theory (DFT) calculations The present study deepened our understanding on the MnO2 catalyzed ozonation and provided reference to enhance the process efficiency.

Science of the Total Environment published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C9H17NO, Formula: C9H17NO.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Wang, Yujiao’s team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 438 | CAS: 826-36-8

Chemical Engineering Journal (Amsterdam, Netherlands) published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C22H23ClN4, Formula: C9H17NO.

Wang, Yujiao published the artcileFeOx@graphitic carbon core-shell embedded in microporous N-doped biochar activated peroxydisulfate for removal of Bisphenol A: Multiple active sites induced non-radical/radical mechanism, Formula: C9H17NO, the publication is Chemical Engineering Journal (Amsterdam, Netherlands) (2022), 135552, database is CAplus.

The development of novel carbocatalysts with high activity and stability is important for the rapid degradation of emerging pollutants. Fe/N co-doped biochar (FeOx@GC-NBC) was innovatively synthesized with a pyrolytic carbonization method and then used as a functional peroxydisulfate (PDS) activator to degrade Bisphenol A (BPA). FeOx@GC-NBC with an optimized Fe/N ratio modification exhibited 23.16 and 8.65-fold great activity for BPA removal compared to pristine BC and N-doped BC, resp. Approx. 93% of total organic carbon (TOC) could be removed in the heterogeneous activation system. We attributed the excellent performance of FeOx@GC-NBC to the following attributes: i) a microporous carbon matrix with larger sp. surface area (1691.81 m2·g-1) was favorable for adsorption, exposure of catalyst active sites (e.g., Fe-Nx, Graphitic N) and electron-transfer; ii) the C-O-Fe bond and highly core-shell structure of graphitic nanosheets (FeOx@GC) enhanced the N retention ability and durability of the catalyst; iii) organics adsorption dominated by a “pore-filling and π-π interaction” mechanism effectively promoted BPA oxidation In acidic and neutral solutions, the radical oxidation (SO·-4and ·OH) processes were responsible for BPA decomposition In alk. solution, electron transfer, instead of 1O2 or a high-valent iron species, was the dominant pathway. This study proposes a simple and feasible strategy to synthesize the FeOx@GC-NBC catalyst, which provides insights into catalyst design and the internal active sites involved in the purification mechanism of refractory organics

Chemical Engineering Journal (Amsterdam, Netherlands) published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C22H23ClN4, Formula: C9H17NO.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Peng, Hui’s team published research in Toxicology and Applied Pharmacology in 292 | CAS: 39546-32-2

Toxicology and Applied Pharmacology published new progress about 39546-32-2. 39546-32-2 belongs to piperidines, auxiliary class Piperidine,Amine,Amide, name is Piperidine-4-carboxamide, and the molecular formula is C6H12N2O, SDS of cas: 39546-32-2.

Peng, Hui published the artcileSuppression of NRF2-ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells, SDS of cas: 39546-32-2, the publication is Toxicology and Applied Pharmacology (2016), 1-7, database is CAplus and MEDLINE.

Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidant response element (ARE)-dependent transcription, plays a pivotal role in chem. detoxification in normal and tumor cells. Consistent with previous findings that NRF2-ARE contributes to chemotherapeutic resistance of cancer cells, we found that stable knockdown of NRF2 by lentiviral shRNA in human acute monocytic leukemia (AML) THP-1 cells enhanced the cytotoxicity of several chemotherapeutic agents, including arsenic trioxide (As2O3), etoposide and doxorubicin. Using an ARE-luciferase reporter expressed in several human and mouse cells, we identified a set of compounds, including isonicotinic acid amides, isoniazid and ethionamide, that inhibited NRF2-ARE activity. Treatment of THP-1 cells with ethionamide, for instance, significantly reduced mRNA expression of multiple ARE-driven genes under either basal or As2O3-challenged conditions. As determined by cell viability and cell cycle, suppression of NRF2-ARE by ethionamide also significantly enhanced susceptibility of THP-1 and U937 cells to As2O3-induced cytotoxicity. In THP-1 cells, the sensitizing effect of ethionamide on As2O3-induced cytotoxicity was highly dependent on NRF2. To our knowledge, the present study is the first to demonstrate that ethionamide suppresses NRF2-ARE signaling and disrupts the transcriptional network of the antioxidant response in AML cells, leading to sensitization to chemotherapeutic agents.

Toxicology and Applied Pharmacology published new progress about 39546-32-2. 39546-32-2 belongs to piperidines, auxiliary class Piperidine,Amine,Amide, name is Piperidine-4-carboxamide, and the molecular formula is C6H12N2O, SDS of cas: 39546-32-2.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Mao, Fei’s team published research in ACS Chemical Neuroscience in 9 | CAS: 39546-32-2

ACS Chemical Neuroscience published new progress about 39546-32-2. 39546-32-2 belongs to piperidines, auxiliary class Piperidine,Amine,Amide, name is Piperidine-4-carboxamide, and the molecular formula is C6H12N2O, Safety of Piperidine-4-carboxamide.

Mao, Fei published the artcileDesign, Synthesis, and Biological Evaluation of Orally Available First-Generation Dual-Target Selective Inhibitors of Acetylcholinesterase (AChE) and Phosphodiesterase 5 (PDE5) for the Treatment of Alzheimer’s Disease, Safety of Piperidine-4-carboxamide, the publication is ACS Chemical Neuroscience (2018), 9(2), 328-345, database is CAplus and MEDLINE.

Through drug discovery strategies of repurposing and redeveloping existing drugs, a series of novel tadalafil derivatives were rationally designed, synthesized, and evaluated to seek dual-target AChE/PDE5 inhibitors as good candidate drugs for Alzheimer’s disease (AD). Among these derivatives, (6R,12aR)-6-(benzo[d][1,3]dioxol-5-yl)-2-(2-(1-benzylpiperidin-4yl)ethyl)-2,3,6,7,12,12a-hexahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indole-1,4-dione (1p, I) and (6R,12aS)-6-(benzo[d][1,3]dioxol-5-yl)-2-(2-(1-benzylpiperidin-4yl)ethyl)-2,3,6,7,12,12a-hexahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indole-1,4-dione (1w, II) exhibited excellent selective dual-target AChE/PDE5 inhibitory activities and improved blood-brain barrier (BBB) penetrability. Importantly, II·Cit (citrate of II) could reverse the cognitive dysfunction of scopolamine-induced AD mice and exhibited an excellent effect on enhancing cAMP response element-binding protein (CREB) phosphorylation in vivo, a crucial factor in memory formation and synaptic plasticity. Moreover, the mol. docking simulations of II with hAChE and hPDE5A confirmed that the design strategy was rational. In summary, the research provides a potential selective dual-target AChE/PDE5 inhibitor as a good candidate drug for the treatment of AD, and it could also be regarded as a small mol. probe to validate the novel AD therapeutic approach in vivo.

ACS Chemical Neuroscience published new progress about 39546-32-2. 39546-32-2 belongs to piperidines, auxiliary class Piperidine,Amine,Amide, name is Piperidine-4-carboxamide, and the molecular formula is C6H12N2O, Safety of Piperidine-4-carboxamide.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Zhou, Mingsong’s team published research in Journal of Agricultural and Food Chemistry in 67 | CAS: 826-36-8

Journal of Agricultural and Food Chemistry published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C4H6N2, Application of 2,2,6,6-Tetramethylpiperidin-4-one.

Zhou, Mingsong published the artcileSynthesis of a Hindered Amine-Grafted Lignin-Based Emulsifier and Its Application in a Green Emulsifiable Concentrate, Application of 2,2,6,6-Tetramethylpiperidin-4-one, the publication is Journal of Agricultural and Food Chemistry (2019), 67(40), 11129-11136, database is CAplus and MEDLINE.

The 4-amion-2,2,6,6-tetramethylpiperidine (Temp) was grafted into the Sodium Lignosulfonate (SL) to obtain the hindered amine modified lignosulfonate (SL-Temp). Then the polymer surfactant (SL-Temp-CTAB) was prepared by using cetyltrimethylammonium bromide (CTAB) and SL-Temperature The obtained SL-Temp-CTAB was used as emulsifier to prepare green Emulsifiable Concentrate (EC) of avermectin (AVM), which shows good emulsifying property and storage stability. The prepared AVM green EC can form AVM-loaded microspheres with nanometer particle size distribution after emulsification in water. After UV irradiation for 70 h, the AVM retention rate of the green EC prepared using SL-Temp-CTAB was 75.8%, which is much higher than that of com. EC (0.4%) and the green EC prepared using unmodified SL (31.4%). Moreover, the AVM green EC prepared using SL-Temp-CTAB has slow-release performance, and the release equilibrium time is 5.3 times of the com. EC. Therefore, the newly prepared AVM green EC using lignin-based functional emulsifier shows good anti-photolysis and slow-release performance compared with the traditional EC.

Journal of Agricultural and Food Chemistry published new progress about 826-36-8. 826-36-8 belongs to piperidines, auxiliary class Natural product, name is 2,2,6,6-Tetramethylpiperidin-4-one, and the molecular formula is C4H6N2, Application of 2,2,6,6-Tetramethylpiperidin-4-one.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem

 

Zhang, Xinyu’s team published research in Organic Chemistry Frontiers in 8 | CAS: 39546-32-2

Organic Chemistry Frontiers published new progress about 39546-32-2. 39546-32-2 belongs to piperidines, auxiliary class Piperidine,Amine,Amide, name is Piperidine-4-carboxamide, and the molecular formula is C10H10O2, Safety of Piperidine-4-carboxamide.

Zhang, Xinyu published the artcile3,6-Diamino-7,8-dihydroisoquinoline-4-carbonitrile derivatives: unexpected facile synthesis, full-color-tunable solid-state emissions and mechanofluorochromic activities, Safety of Piperidine-4-carboxamide, the publication is Organic Chemistry Frontiers (2021), 8(5), 856-867, database is CAplus.

A series of novel 3,6-diamino-7,8-dihydroisoquinoline-4-carbonitrile (DDIC) derivatives I [R = Bn, R1 = Me; R2 = Ph, 4-FC6H4, 2-thienyl, etc.; RR1 = (CH2)4, (CH2)5, (CH2)2CH(CH3)(CH2)2, etc.] were prepared from dicyanomethylene-4H-pyran derivatives and secondary amines by a mechanism of ring-opening and sequential ring-closing reactions. This reaction had the advantages of readily available materials, simple operations, mild reaction conditions, a broad substrate scope and good yields. The DDIC derivatives displayed solid-state fluorescence with the emission wavelengths covering the whole visible light range and the solid-state emissions were demonstrated to be ascribed to the twisted mol. conformations and loose stacking modes by crystal structural anal. Among the compounds, 9aa exhibited a bathochromic mechanofluorochromic (MFC) phenomenon from blue to cyan due to increased mol. conjugation upon grinding, whereas 3aj and 3ka exhibited hypsochromic MFC activities with the color changing from orange to green and red to orange, resp., because of decreased mol. conjugation, revealing that full-color-tunable emissions could also be realized by mechanofluorochromism. Furthermore, MFC-active mols. could be used in the field of encryption of important image or text information. Addnl., 3ka was demonstrated to emit single-mol. white fluorescence in organic solvents through the regulation of the concentration The unexpected discovery of the DDIC derivatives provided a new possibility for the design and synthesis of novel isoquinoline-based fluorescent materials with excellent performance in the solid state.

Organic Chemistry Frontiers published new progress about 39546-32-2. 39546-32-2 belongs to piperidines, auxiliary class Piperidine,Amine,Amide, name is Piperidine-4-carboxamide, and the molecular formula is C10H10O2, Safety of Piperidine-4-carboxamide.

Referemce:
https://en.wikipedia.org/wiki/Piperidine,
Piperidine | C5H11N – PubChem