Sverrild, Asger et al. published their research in Respiratory Research in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

The use of the mannitol test as an outcome measure in asthma intervention studies: a review and practical recommendations was written by Sverrild, Asger;Leadbetter, Joanna;Porsbjerg, Celeste. And the article was included in Respiratory Research in 2021.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

Meta-anal. of mannitol test is an indirect bronchial challenge test widely used in diagnosing asthma. Response to the mannitol test correlates with the level of eosinophilic and mast cell airway inflammation, and a pos. mannitol test is highly predictive of a response to anti-inflammatory treatment with inhaled corticosteroids. The response to mannitol is a physiol. biomarker that may, therefore, be used to assess the response to other anti-inflammatory treatments and may be of particular interest in early phase studies that require surrogate markers to predict a clin. response. The main objectives of this review were to assess the practical aspects of using mannitol as an endpoint in clin. trials and provide the clin. researcher and respiratory physician with recommendations when designing early clin. trials. The aim of this review was to summarise previous uses of the mannitol test as an outcome measure in clin. intervention studies. The PubMed database was searched using a combination of MeSH and keywords. Eligible studies included intervention or repeatability studies using the standard mannitol test, at multiple timepoints, reporting the use of PD15 as a measure, and published in English. Of the 193 papers identified, 12 studies met the inclusion criteria and data from these are discussed in detail. Data on the mode of action, correlation with airway inflammation, its diagnostic properties, and repeatability have been summarised, and suggestions for the reporting of test results provided. Worked examples of power calculations for dimensioning study populations are presented for different types of study designs. Finally, interpretation and reporting of the change in the response to the mannitol test are discussed. The mechanistic and practical features of the mannitol test make it a useful marker of disease, not only in clin. diagnoses, but also as an outcome measure in intervention trials. Measuring airway hyperresponsiveness to mannitol provides a novel and reproducible test for assessing efficacy in intervention trials, and importantly, utilizes a test that links directly to underlying drivers of disease. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Kumar, Mukesh et al. published their research in Journal of Clinical and Diagnostic Research in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Recommanded Product: 83799-24-0

Appraisal of inter-rater agreement among assessment scales and retrospective analysis of validated reports of cutaneous adverse drug reactions at tertiary care hospital in eastern India was written by Kumar, Mukesh;Manjhi, Pramod Kumar;Singh, Shruti;Soni;Singh, Dheeraj Kumar;Deo, Sanmita. And the article was included in Journal of Clinical and Diagnostic Research in 2021.Recommanded Product: 83799-24-0 The following contents are mentioned in the article:

Cutaneous Adverse Drug Reactions (CADRs) share significantly to Adverse Drug Reactions (ADRs) comprising 10%-30% of all ADR reporting in India. Multi Drug Therapy for Leprosy (MDT-L) and antimicrobials contribute remarkably to the overall CADRs burden. To show distinctive pictures of CADRs profile and to assess inter-rater agreement of assessment scales among study populations. A retrospective anal. was done for 245 CADRs reported from March 2018 to March 2020. Cohen kappa statistics was applied for inter-rater agreement study for causality (WHO-UMC Scale and Naranjo′s Algorithm), severity (Hartwig and Siegel scale) and preventability assessment (Modified Schumock & Thornton scale). CADRs contribute 45.54% of total ADRs reported during study period. Male (60.41%) and age group 21-40 years (22.45%) were predominant sex and age group, resp. Multidrug therapy for leprosy (51.84%) was the most common offending agent and hyperpigmentation (20.82%), dryness (13.1%), and both (11%) were the most prevalent CADRs. Causality of WHO-UMC Scale was higher with ′Possible′ than ′Probable′. Whereas, ′Probable′ was maximally found with Naranjo′s Algorithm. Severity assessment showed maximum ′mild′ cases i.e., 66.53% (manual) and 69.8%% (app). Preventability assessment depicted mostly ′Definite′, 66.53% (manual) and 85.71% (app). Inter-rater agreement study showed ′Substantial agreement′ for WHO-UMC Scale (K = 0.678) and Naranjo′s algorithm (K = 0.820), when manual vs app ratings were compared. ′Almost perfect′ for severity assessment (K = 0.893) and ′Moderate′ for preventability assessment (K = 0.434) were noticed. ′Fair′ agreement was observed when manual (WHO-UMC scale) vs manual (Naranjo′s algorithm) were compared with K = 0.290 and also, in app (WHO-UMC scale) vs app (Naranjo′s algorithm) with K = 0.319. CADRs were most prevalent among ADRs which have a distinctive picture in eastern India. WHO- UMC scale and Naranjo′s algorithm concluded significant differences in causality with only ′fair′ agreement between them. Severity and preventability assessment done by manually little varied in their results with pharmvigill app and is still more reliable and popular. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Recommanded Product: 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Recommanded Product: 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Kodesova, Radka et al. published their research in Science of the Total Environment in 2020 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

How microbial community composition, sorption and simultaneous application of six pharmaceuticals affect their dissipation in soils was written by Kodesova, Radka;Chronakova, Alica;Grabicova, Katerina;Kocarek, Martin;Schmidtova, Zuzana;Frkova, Zuzana;Vojs Stanova, Andrea;Nikodem, Antonin;Klement, Ales;Fer, Miroslav;Grabic, Roman. And the article was included in Science of the Total Environment in 2020.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

Pharmaceuticals may enter soils due to the application of treated wastewater or biosolids. Their leakage from soils towards the groundwater, and their uptake by plants is largely controlled by sorption and degradation of those compounds in soils. Standard laboratory batch degradation and sorption experiments were performed using soil samples obtained from the top horizons of seven different soil types and 6 pharmaceuticals (carbamazepine, irbesartan, fexofenadine, clindamycin and sulfamethoxazole), which were applied either as single-solute solutions or as mixtures (not for sorption). The highest dissipation half-lives were observed for citalopram (average DT50,S for a single compound of 152 ± 53.5 days) followed by carbamazepine (106.0 ± 17.5 days), irbesartan (24.4 ± 3.5 days), fexofenadine (23.5 ± 20.9 days), clindamycin (10.8 ± 4.2 days) and sulfamethoxazole (9.6 ± 2.0 days). The simultaneous application of all compounds increased the half-lives (DT50,M) of all compounds (particularly carbamazepine, citalopram, fexofenadine and irbesartan), which is likely explained by the neg. impact of antibiotics (sulfamethoxazole and clindamycin) on soil microbial community. However, this trend was not consistent in all soils. In several cases, the DT50,S values were even higher than the DT50,M values. Principal component analyses showed that while knowledge of basic soil properties determines grouping of soils according sorption behavior, knowledge of the microbial community structure could be used to group soils according to the dissipation behavior of tested compounds in these soils. The derived multiple linear regression models for estimating dissipation half-lives (DT50,S) for citalopram, clindamycin, fexofenadine, irbesartan and sulfamethoxazole always included at least one microbial factor (either amount of phosphorus in microbial biomass or microbial biomarkers derived from phospholipid fatty acids) that deceased half-lives (i.e., enhanced dissipations). Equations for citalopram, clindamycin, fexofenadine and sulfamethoxazole included the Freundlich sorption coefficient, which likely increased half-lives (i.e., prolonged dissipations). This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Swiech, D. et al. published their research in Physical Chemistry Chemical Physics in 2015 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.HPLC of Formula: 86069-86-5

Tip-enhanced Raman spectroscopy of bradykinin and its B2 receptor antagonists adsorbed onto colloidal suspended Ag nanowires was written by Swiech, D.;Tanabe, I.;Vantasin, S.;Sobolewski, D.;Ozaki, Y.;Prahl, A.;Mackowski, S.;Proniewicz, E.. And the article was included in Physical Chemistry Chemical Physics in 2015.HPLC of Formula: 86069-86-5 The following contents are mentioned in the article:

The tip-enhanced Raman scattering (TERS) spectra of bradykinin (BK) and its potent B2 BK receptor antagonists, [D-Arg0,Hyp3,Thi5,8,L-Pip7]BK and [D-Arg0,Hyp3,Thi5,D-Phe7,L-Pip8]BK, approx. with a size of about 40 nm, adsorbed onto colloidal suspended Ag nanowires with diameter in the range of 350-500 nm and length of 2-50 μm were recorded. The metal surface plasmon resonance and morphol. of the Ag nanowires were studied by UV-visible (UV-Vis) spectroscopy and SEM (SEM). Briefly, it was shown that two C-terminal amino acids of BK and [D-Arg0,Hyp3,Thi5,8,L-Pip7]BK are involved in the interaction with the colloidal suspended Ag nanowire surface, whereas three last amino acids of the [D-Arg0,Hyp3,Thi5,D-Phe7,L-Pip8]BK sequence attached the Ag surface. Thus, BK adsorbs on the colloidal suspended Ag nanowires mainly through the Phe5/8 ring (tilted orientation) and the one oxygen atom of the carboxylate group and the H2N-C-NH-CH2– fragment of Arg9. In the case of [D-Arg0,Hyp3,Thi5,8,L-Pip7]BK, the Thi8 ring (through the lone electron pair on the sulfur atom) and the both oxygen atoms of the carboxylate group and the amine group of Arg9 mainly participated in the interaction with the Ag nanowire surface. For [D-Arg0,Hyp3,Thi5,D-Phe7,L-Pip8]BK, the D-Phe7 ring, the Pip8 ring, and the Arg9 side-chain assisted in the peptide interaction with the Ag surface. The obtained results emphasize the importance of the C-terminal part of these peptides in the adsorption process onto the colloidal suspended Ag nanowires. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5HPLC of Formula: 86069-86-5).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.HPLC of Formula: 86069-86-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Swiech, D. et al. published their research in Physical Chemistry Chemical Physics in 2015 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Computed Properties of C21H21NO4

Tip-enhanced Raman spectroscopy of bradykinin and its B2 receptor antagonists adsorbed onto colloidal suspended Ag nanowires was written by Swiech, D.;Tanabe, I.;Vantasin, S.;Sobolewski, D.;Ozaki, Y.;Prahl, A.;Mackowski, S.;Proniewicz, E.. And the article was included in Physical Chemistry Chemical Physics in 2015.Computed Properties of C21H21NO4 The following contents are mentioned in the article:

The tip-enhanced Raman scattering (TERS) spectra of bradykinin (BK) and its potent B2 BK receptor antagonists, [D-Arg0,Hyp3,Thi5,8,L-Pip7]BK and [D-Arg0,Hyp3,Thi5,D-Phe7,L-Pip8]BK, approx. with a size of about 40 nm, adsorbed onto colloidal suspended Ag nanowires with diameter in the range of 350-500 nm and length of 2-50 μm were recorded. The metal surface plasmon resonance and morphol. of the Ag nanowires were studied by UV-visible (UV-Vis) spectroscopy and SEM (SEM). Briefly, it was shown that two C-terminal amino acids of BK and [D-Arg0,Hyp3,Thi5,8,L-Pip7]BK are involved in the interaction with the colloidal suspended Ag nanowire surface, whereas three last amino acids of the [D-Arg0,Hyp3,Thi5,D-Phe7,L-Pip8]BK sequence attached the Ag surface. Thus, BK adsorbs on the colloidal suspended Ag nanowires mainly through the Phe5/8 ring (tilted orientation) and the one oxygen atom of the carboxylate group and the H2N-C-NH-CH2– fragment of Arg9. In the case of [D-Arg0,Hyp3,Thi5,8,L-Pip7]BK, the Thi8 ring (through the lone electron pair on the sulfur atom) and the both oxygen atoms of the carboxylate group and the amine group of Arg9 mainly participated in the interaction with the Ag nanowire surface. For [D-Arg0,Hyp3,Thi5,D-Phe7,L-Pip8]BK, the D-Phe7 ring, the Pip8 ring, and the Arg9 side-chain assisted in the peptide interaction with the Ag surface. The obtained results emphasize the importance of the C-terminal part of these peptides in the adsorption process onto the colloidal suspended Ag nanowires. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Computed Properties of C21H21NO4).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Computed Properties of C21H21NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Rollason, Victoria et al. published their research in Drug Safety in 2020 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Electric Literature of C32H39NO4

Safety of the Geneva Cocktail, a Cytochrome P450 and P-Glycoprotein Phenotyping Cocktail, in Healthy Volunteers from Three Different Geographic Origins was written by Rollason, Victoria;Mouterde, Mederic;Daali, Youssef;Cizkova, Martina;Priehodova, Edita;Kulichova, Iva;Posova, Helena;Petanova, Jitka;Mulugeta, Anwar;Makonnen, Eyasu;Al-Habsi, Abir;Davidson, Robin;Al-Balushi, Khalid K.;Al-Thihli, Khalid;Cerna, Marie;Al-Yahyaee, Said;Cerny, Viktor;Yimer, Getnet;Poloni, Estella S.;Desmeules, Jules. And the article was included in Drug Safety in 2020.Electric Literature of C32H39NO4 The following contents are mentioned in the article:

Introduction and Objective: Cytochrome P 450 enzymes are the major drug-metabolizing enzymes in humans and the importance of drug transport proteins, in particular P-glycoprotein, in the variability of drug response has also been highlighted. Activity of cytochrome P 450 enzymes and P-glycoprotein can vary widely between individuals and genotyping and/or phenotyping can help assess their activity. Several phenotyping cocktails have been developed. The Geneva cocktail is composed of a specific probe for six different cytochrome P 450 enzymes and one for P-glycoprotein and was used in the context of a research aiming at exploring genotypes and phenotypes in distinct human populations (NCT02789527). The aim of the present study is to solely report the safety results of the Geneva cocktail in the healthy volunteers of these populations. Materials and Methods: The Geneva cocktail is composed of caffeine, bupropion, flurbiprofen, omeprazole, dextromethorphan, midazolam, and fexofenadine. The volunteers fasted and avoided drinking caffeine-containing beverages or food and grapefruit juice overnight before receiving the cocktail orally. They provided blood spots for the probes concentrations at 2, 3, and 6 h after ingestion and were asked about adverse events. Results: A total of 265 healthy adult volunteers were included from Ethiopia, Oman, and the Czech Republic. The mean plasma concentrations at the 2-h sampling time of each probe drug in the total sample were: 1663 ng/mL for caffeine, 8 ng/mL for bupropion, 789 ng/mL for flurbiprofen, 6 ng/mL for dextromethorphan, 2 ng/mL for midazolam, 35 ng/mL for fexofenadine, and 103 ng/mL for omeprazole. Four adverse events were observed representing an occurrence of 1.5%. All these events were categorized as mild to moderate, non-serious, and resolved spontaneously. A causal link with the cocktail cannot be excluded because of the temporal relationship but is at most evaluated as possible according to the World Health Organization-Uppsala Monitoring Center causal assessment system. Conclusions: In this research, healthy volunteers from three different human populations were phenotyped with the Geneva cocktail. Four adverse events were observed, confirming the safety of this cocktail that is given at lower than clin. relevant doses and therefore results in concentrations lower than those reported to cause adverse events. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Electric Literature of C32H39NO4).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Electric Literature of C32H39NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Shah, S. Ali et al. published their research in Journal of Physiology and Pharmacology in 2020 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Name: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Inhibition of soluble epoxide hydrolase offers protection against fructose-induced diabetes and related metabolic complications in rats was written by Shah, S. Ali;Mehmood, M. H.;Khan, M.;Bukhari, I. Ali;Alorainey, B. I.;Vohra, F.. And the article was included in Journal of Physiology and Pharmacology in 2020.Name: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea The following contents are mentioned in the article:

Stabilization of epoxyeicosatrienoic acids (EETs) levels via soluble epoxide hydrolase (sEH) deletion or its pharmacol. inhibition have been shown to have beneficial effects on inflammation, ischemia, hypertension and diabetes. Owing to the diverse role of EETs, current study was designed to evaluate the therapeutic potential of 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl) urea (TPPU), a novel sEHI against fructose-induced diabetes and related complications in rats. Sprague-Dawley rats (200 – 230 g) were divided into four different groups, each containing 10 animals. One group served as a normal control and received standard diet and drinking water. The second group served as a diseased control and received standard diet, 25% fructose in drinking water and was treated with vehicle only. The third and fourth groups received standard diet, 25% fructose in drinking water and TPPU (2 mg/kg) or metformin (150 mg/kg), resp. All treatments were given orally for 12 wk. At the end of the study, blood samples were collected to measure serum insulin levels and other biochem. parameters. Animals were dissected to collect tissue specimens for histol. and immunohistochem. anal. Animals fed on fructose and treated with vehicle demonstrated elevated blood insulin and glucose levels as well as high levels (P < 0.001) of triglycerides (TGs), cholesterol, low-d. lipoprotein (LDL) and homeostatic model assessment of insulin resistance (HOMA-IR) compared to naive rats. Similarly, the levels of alk. phosphatase (ALP), alanine aminotransferase (ALT), urea and uric acid were significantly (P < 0.001) increased in vehicle treated fructose fed animals. TPPU (2 mg/kg p.o.) and simultaneously fed on fructose for 12 wk substantially decreased HOMA-IR levels, lowered blood glucose, serum cholesterol, LDLs and TGs while high-d. lipoproteins (HDL) levels were increased compared to untreated animals. Metformin, a standard reference drug showed similar results. Microscopic studies of liver and pancreatic sections of TPPU treated animals showed marked improvement in cellular architecture compared to untreated animals. Current study demonstrated profound therapeutic potential of TPPU against fructose induced-diabetes and related metabolic complications which was evident by its attenuating effect fructose-induced hyperglycemia, hyperlipidemia and impaired renal and hepatic serum markers. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Name: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Name: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Stromberga, Zane et al. published their research in Scientific Reports in 2020 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Alterations in histamine responses between juvenile and adult urinary bladder urothelium, lamina propria and detrusor tissues was written by Stromberga, Zane;Chess-Williams, Russ;Moro, Christian. And the article was included in Scientific Reports in 2020.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

Inflammatory mediators may have a role in various lower urinary tract disorders. Histamine is known to induce significant increases in both the tension and frequency of spontaneous phasic contractions in both urothelium with lamina propria (U&LP) and detrusor muscle via the activation of H1 receptor in juvenile animal models. However, it is unclear whether age affects these contractile responses to histamine. This study assessed the histamine receptor subtypes mediating contraction in juvenile and adult porcine bladders and compared the urothelium with lamina propria and detrusor responses to histamine. Isolated tissue bath studies were conducted using strips of porcine U&LP and detrusor obtained from juvenile (6 mo) and adult (3 years) animals exposed to histamine receptor agonists and antagonists. Treatment with histamine (100μM) in U&LP of juvenile animals caused increases in baseline tension by 47.84 ± 6.52 mN/g (p < 0.001, n = 51) and by 50.76 ± 4.10 mN/g (p < 0.001, n = 55) in adult animals. Furthermore, the frequency of spontaneous phasic contractions was significantly enhanced in response to histamine in U&LP of both juvenile and adult tissues (p < 0.001 for both age groups). Treatment with an H2 agonist in U&LP of juvenile animals decreased baseline tension by 13.97 ± 3.45 mN/g (n = 12, p < 0.05), but had no effect in adult animals. Inhibition of H1 receptors resulted in significantly reduced contractile responses of U&LP and detrusor to histamine in both juvenile and adult animals (p < 0.05). Treatment with an H2 receptor antagonist significantly enhanced contractions in juvenile preparations (n = 10, p < 0.05) but had no effect in adult preparations (n = 8). In detrusor, treatment with histamine (100μM) in juvenile tissues showed a significantly higher increase in baseline tension of 19.10 ± 4.92 mN/g (n = 51) when compared to adult tissues exhibiting increases of 8.21 ± 0.89 mN/g (n = 56, p < 0.05). The increases in the baseline tension were significantly inhibited by the presence of H1 receptor antagonists in both juvenile and adult detrusor preparations Treatment with either the H2 receptor antagonist or agonist in detrusor had no effect on both juvenile and adult tissues. Therefore, the histamine receptor system may play an essential role in the maintenance of bladder function or in bladder dysfunction observed in some lower urinary tract disorders. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives.Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Shen, Yijun et al. published their research in Brain, Behavior, and Immunity in 2019 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Anti-inflammatory treatment with a soluble epoxide hydrolase inhibitor attenuates seizures and epilepsy-associated depression in the LiCl-pilocarpine post-status epilepticus rat model was written by Shen, Yijun;Peng, Weifeng;Chen, Qinglan;Hammock, Bruce D.;Liu, Junyan;Li, Dongyang;Yang, Jun;Ding, Jing;Wang, Xin. And the article was included in Brain, Behavior, and Immunity in 2019.Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea The following contents are mentioned in the article:

This study aimed to investigate whether 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), a soluble epoxide hydrolase inhibitor with anti-inflammatory effects, could alleviate spontaneous recurrent seizures (SRS) and epilepsy-associated depressive behaviors in the lithium chloride (LiCl)-pilocarpine-induced post-status epilepticus (SE) rat model. The rats were i.p. (IP) injected with LiCl (127 mg/kg) and pilocarpine (40 mg/kg) to induce SE. A video surveillance system was used to monitor SRS in the post-SE model for 6 wk (from the onset of the 2nd week to the end of the 7th week after SE induction). TPPU (0.1 mg/kg/d) was intragastrically given for 4 wk from the 21st day after SE induction in the SRS + 0.1 TPPU group. The SRS + PEG 400 group was given the vehicle (40% polyethylene glycol 400) instead, and the control group was given LiCl and PEG 400 but not pilocarpine. The sucrose preference test (SPT) and forced swim test (FST) were conducted to evaluate the depression-like behaviors of rats. Immunofluorescent staining, ELISA, and western blot anal. were performed to measure astrocytic and microglial gliosis, neuronal loss, and levels of soluble epoxide hydrolase (sEH), cytokines [tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6], and cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB). The frequency of SRS was significantly decreased at 6 wk and 7 wk after SE induction in the 0.1TPP U group compared with the SRS + PEG 400 group. The immobility time (IMT) evaluated by FST was significantly decreased, whereas the climbing time (CMT) was increased, and the sucrose preference rate (SPR) evaluated by SPT was in an increasing trend. The levels of sEH, TNF-α, IL-1β, and IL-6 in the hippocampus (Hip) and prefrontal cortex (PFC) were all significantly increased in the SRS + PEG 400 group compared with the control group; neuronal loss, astrogliosis, and microglial activation were also observed The astrocytic and microglial activation and levels of the pro-inflammatory cytokines in the Hip and PFC were significantly attenuated in the TPPU group compared with the SRS + PEG 400 group; moreover, neuronal loss and the decreased CREB expression were significantly alleviated as well. TPPU treatment after SE attenuates SRS and epilepsy-associated depressive behaviors in the LiCl-pilocarpine induced post-SE rat model, and it also exerts anti-inflammatory effects in the brain. Our findings suggest a new therapeutic approach for epilepsy and its comorbidities, especially depression. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Carnovale, Carla et al. published their research in World Allergy Organization Journal in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Safety of fexofenadine and other second-generation oral antihistamines before and after the removal of the prescription requirement in Italy and other European countries: A real-world evidence study and systematicreview was written by Carnovale, Carla;Battini, Vera;Gringeri, Michele;Volonte, Marina;Uboldi, Maria Chiara;Chiarenza, Andrea;Passalacqua, Giovanni. And the article was included in World Allergy Organization Journal in 2022.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

The change from prescription to over-the-counter (OTC) status of oral antihistamines may raise concerns about drug safety due to the possibility of misuse/abuse. In most European countries, oral antihistamines are available without prescription, whereas in Italy, only <10-tablet packs are available OTC. To evaluate the safety profile of fexofenadine after OTC switch in Italy in a real-world setting, and to compare its safety profile to that of other European countries where larger pack sizes are available. To compare the safety of fexofenadine, cetirizine, and loratadine in Italy. To examine safety/efficacy across Europe with a systematic review. This case-by-case anal. used the US Food and Drug Administration (FDA) adverse event reporting system (FAERS) to extract data of the adverse events (AEs) related to fexofenadine, loratadine and cetirizine in Italy Jan. 2010-June 2020. The year 2016 was taken as the index date (removal of prescription requirement) for evaluation of the reporting trend of AEs of fexofenadine in Italy and make a comparison pre/post-OTC switch. A comparison of AEs with other European countries where fexofenadine is sold OTC in large packs >20 tablets (Belgium, Portugal, Switzerland, Finland, Hungary) was made. The rate at which an AE related to oral antihistamines occurred was estimated by calculation of the reporting rate (number of cases/[defined daily dose/1000 inhabitants per day]) on the basis of IQVIA sales data using the Italian Institute of Statistics database. A systematic review of the literature was also performed. There were 3760 reports of AEs with a suspected association with fexofenadine; of these, eight were reported from Italy. There was a slightly increasing trend per yr, in line with a general reporting trend of other drugs. In European countries where fexofenadine is available, the impact of OTC switch on AE reporting activity was negligible: from 2016, the reporting rate increased slightly and then normalized at 3.01, an incidence value similar to that recorded before the OTC switch (3.7 in 2015). Of 22 studies included in the systematic review, 18 (82%) pos. evaluated the OTC use of oral antihistamines, confirming an acceptable safety/tolerability profile. There was no difference in number of AEs reported for fexofenadine pre/post-OTC switch, indicating a similar safety profile. Spontaneous reporting systems are a valuable source of real-world data and support the OTC provision of oral antihistamines in Europe and fexofenadine in Italy, in addition to supporting the use of larger pack sizes in Italy. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem