Nashed, Dania et al. published their research in BMC Chemistry in 2020 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Quality Control of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

New pencil graphite electrodes for potentiometric determination of fexofenadine hydrochloride and montelukast sodium in their pure, synthetic mixtures, and combined dosage form was written by Nashed, Dania;Noureldin, Imad;Sakur, Amir Alhaj. And the article was included in BMC Chemistry in 2020.Quality Control of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

This paper introduces the first electrochem. approach for the determination of Fexofenadine hydrochloride and Montelukast sodium as a combined form by constructing three new graphite electrodes coated with a polymeric membrane. The first electrode was constructed using ammonium molybdate reagent as an ion pair with fexofenadine cation for the determination of Fexofenadine drug, the second electrode was constructed using cobalt nitrate as an ion pair with montelukast anion for the determination of Montelukast drug, the third electrode was prepared by incorporating the two previously mentioned ion pairs in the same graphite sensor, which makes this sensor sensitive to each Fexofenadine and Montelukast drug. The coating material was a polymeric film comprises of Poly Vinyl Chloride (PVC), Di-Bu phthalate as a plasticizer (DBP), ion pairs of drugs with previously mentioned reagents. The electrodes showed a Nernstian response with a mean calibration graph slopes of [59.227, 28.430, (59.048, 28,643)] mv.decade-1 for the three pencil electrodes resp., with detection limits 0.025μM for Fexofenadine and 0.019μM for Montelukast drug which makes this method outperforms the reported method for the determination of this combination. The electrodes work effectively over pH range (2-4.5) for Fexofenadine hydrochloride and (5-9.5) for Montelukast sodium. The influence of the proposed interfering species was negligible as shown by selectivity coefficient values. The effectiveness of the electrodes continued in a period of time (45-69) days. The suggested sensors demonstrated useful anal. features for the determination of both drugs in bulk powder, in laboratory prepared mixtures and their combined dosage form. We have validated the method following ICH protocol, and we have reached very significant results in terms of the linearity, accuracy, selectivity, and precision of the method. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Quality Control of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Quality Control of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Huang, Hui-Ju et al. published their research in Molecular Neurobiology in 2018 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Application of 1222780-33-7

Soluble Epoxide Hydrolase Inhibition Attenuates MPTP-Induced Neurotoxicity in the Nigrostriatal Dopaminergic System: Involvement of α-Synuclein Aggregation and ER Stress was written by Huang, Hui-Ju;Wang, Yi-Ting;Lin, Hui-Ching;Lee, Yi-Hsuan;Lin, Anya Maan-Yuh. And the article was included in Molecular Neurobiology in 2018.Application of 1222780-33-7 The following contents are mentioned in the article:

Soluble epoxide hydrolase (sEH) is widely expressed in the mammalian brain and possesses dual enzymic activities, including C-terminal epoxide hydrolase (C-EH) which degrades epoxyeicosatrienoic acid (EET), a beneficial arachidonic acid metabolite. In the present study, the neuroprotective effect of sEH inhibition on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration of nigrostriatal dopaminergic system was investigated using genetic and pharmacol. approaches. MPTP (15 mg/kg) was i.p. injected in sEH knockout (KO) mice and C57BL/6J mice as wild-type (WT) mice. Compared with the MPTP-treated WT mice, MPTP-induced reductions in striatal dopamine content and nigral tyrosine hydroxylase level (TH, a biomarker of dopaminergic neurons) were less significant in the treated sEH mice. Furthermore, MPTP-induced HO-1 elevation (a redox-regulated protein), α-synuclein aggregation, and caspase 12 activation (a hallmark of ER stress) were less prominent in sEH KO mice than in WT mice. These data indicate that sEH KO mice are more resistant to MPTP-induced neurotoxicity. The pharmacol. effect of N-[1-(1-oxopropyl)-4-piperidinyl]-N0-[4-(trifluoromethoxy)phenyl]-urea (TPPU, an sEH inhibitor) on MPTP-induced neurotoxicity was investigated in WT mice. TPPU (1 mg/kg, i.p.) attenuated MPTP-induced reduction in striatal dopamine content, TH-pos. cell numbers, TH, and pro-caspase 9 protein levels (an initiator caspase of apoptosis) in mouse SN. Moreover, TPPU reduced MPTP-induced HO-1 elevation, α-synuclein aggregation and caspase 12 activation, indicating that TPPU is effective in attenuating MPTP-induced oxidative stress, apoptosis, protein aggregation, and ER stress. In conclusion, our study suggests that sEH is a potential target for developing therapies for parkinsonism. Furthermore, sEH inhibitors may be of clin. significance for treating CNS neurodegenerative diseases. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Application of 1222780-33-7).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Application of 1222780-33-7

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Shchulkin, Alexey V. et al. published their research in Biochemistry (Moscow) in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

The Role of P-Glycoprotein in Decreasing Cell Membranes Permeability during Oxidative Stress was written by Shchulkin, Alexey V.;Abalenikhina, Yulia V.;Erokhina, Pelageya D.;Chernykh, Ivan V.;Yakusheva, Elena N.. And the article was included in Biochemistry (Moscow) in 2021.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

P-Glycoprotein (P-gp) is one of the most clin. significant representatives of the ABC transporter superfamily due to its participation in the transport of biotic components and xenobiotics across the plasma membrane. It is known that various chems., environmental factors, and pathol. processes can affect P-gp activity and expression. In this study, we investigated the role of P-gp in limiting the cell membrane permeability during oxidative stress. Human adenocarcinoma colon cells (Caco-2) overexpressing P-gp were cultured for 72 h in the medium containing hydrogen peroxide (0.1-50μM). The transport of the P-gp substrate fexofenadine was evaluated in a special Transwell system. The amounts of P-gp and Nrf2 transcription factor were analyzed by the ELISA. The concentration of SH-groups in proteins and the contents of lipid peroxidation products and protein carbonyl derivatives were determined spectrophotometrically. Hydrogen peroxide at a concentration of 0.1-5μM did not significantly affect the studied parameters, while incubation with 10μM H2O2 decreased in the level of SH groups in cell lysates and increased in the amount of Nrf2 in the cell lysates. Nrf2, in its turn, mediated an increase in the content and activity of the P-gp transporter, thus limiting the increasing permeability of the cell membrane. Hydrogen peroxide at a concentration of 50μM promoted oxidative stress, which was manifested as a decrease in the content of SH-groups, increase in the concentration of lipid peroxidation products and protein carbonyl derivatives, and decrease in the P-gp level, which led to a significantly increased permeability of the plasma membrane. These results show that the transport and protective roles of P-gp, in particular, reduction of the cell membrane permeability, are affected by the intensity of oxidative stress and can be manifested only if the extent of membrane damage is insignificant. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Recommanded Product: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Kumari, Nidhi et al. published their research in International Journal of Pharmaceutical Sciences Review and Research in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Category: piperidines

Prescription pattern of drugs prescribed in out patient department of ENT and adverse drug reactions reported from ENT department in a tertiary care hospital of Bihar was written by Kumari, Nidhi;Mishra, Sarita Kumari;Kumar, Manish;Shakur, Adil Ali;Mishra, Hitesh;Dikshit, Harihar. And the article was included in International Journal of Pharmaceutical Sciences Review and Research in 2022.Category: piperidines The following contents are mentioned in the article:

Diseases related to Ear, Nose & Throat (ENT) occur very commonly in all age groups. Thus periodic evaluation of prescription pattern and adverse drug reaction (ADR) monitoring will be helpful in enabling appropriate modifications in prescribing pattern. This will also result in improved therapeutic efficacy and better patient compliance. The aim of the study is to evaluate prescription pattern of drugs prescribed in ENT OPD and to analyze the ADRs from ENT Department (IPD & OPD). This was an observational & prospective study, conducted for the duration of six months i.e. from March 2021 to Oct. 2021. Prescription was analyzed for demog. details, pattern of prescribed medications, pattern/types of ENT diseases and adequacy of prescription. For monitoring of ADRs active surveillance and spontaneous reporting both were used. In this study, prescription of 251 patients were analyzed. It was found that male patients (64.5%) were significantly higher. A total of 850 drugs were prescribed. The most commonly prescribed group of drugs were antimicrobials. Most commonly prescribed FDC was of cefpodoxime and clavulanic acid. Otitis media was the most commonly suffered condition. Dose, frequency, total duration of treatment and instructions in vernacular language was mentioned in all the prescription. The average number of drugs prescribed was 3.3. A total of four ADRs were reported. This study was a sincere attempt to see the prescribing pattern of drugs prescribed in ENT department and its associated ADRs. Antimicrobials were the most commonly prescribed drugs and it could be attributed to increased occurrence of infections. The adequacy of prescription demonstrates good aspects of prescription writing. Since no prescription had more than five drugs; we can say that polypharmacy was avoided. ADR reporting was very low so it strongly suggests the need to spread awareness among health-care workers and patients for reporting. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Category: piperidines).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Category: piperidines

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Tanoue, Rumi et al. published their research in Journal of Chromatography A in 2020 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Recommanded Product: 83799-24-0

Rapid analysis of 65 pharmaceuticals and 7 personal care products in plasma and whole-body tissue samples of fish using acidic extraction, zirconia-coated silica cleanup, and liquid chromatography-tandem mass spectrometry was written by Tanoue, Rumi;Nozaki, Kazusa;Nomiyama, Kei;Kunisue, Tatsuya;Tanabe, Shinsuke. And the article was included in Journal of Chromatography A in 2020.Recommanded Product: 83799-24-0 The following contents are mentioned in the article:

The presence of pharmaceuticals and personal care products (PPCPs) in aquatic systems has raised concern about their potential adverse effects on aquatic organisms. Considering the fact that the physiol./biol. effects of PPCPs are triggered when their concentrations in the organism exceeds the resp. threshold values, it is important to understand the bioconcentration and toxicokinetics of PPCPs in aquatic organisms. In the present study, we developed a convenient anal. method for the determination of 65 pharmaceuticals and 7 personal care products (log Kow = 0.14-6.04) in plasma and whole-body tissues of fish. The anal. method consists of ultrasound-assisted extraction in methanol/acetonitrile (1:1, volume/volume,) acidified with acetic acid-ammonium acetate buffer (pH 4), cleanup on a HybridSPE-Phospholipid cartridge (zirconia-coated silica cartridge), and quantification with liquid chromatog.-tandem mass spectrometry (LC-MS/MS). Acceptable accuracy (internal standard-corrected recovery: 70%-120%) and intra- and inter-day precision (coefficient of variation: <15%) were obtained for both plasma and whole-body tissue samples. In addition, low method detection limits were achieved for both plasma (0.0077 to 0.93 ng mL-1) and whole-body tissue (0.022 to 4.3 ng g  1 wet weight), although the developed method is simple and fast – a batch of 24 samples can be prepared within 6 h, excluding the time for measurement with LC-MS/MS. The developed method was successfully applied to the anal. of PPCPs in plasma and whole-body tissue samples of fish collected in a treated wastewater-dominated stream, for a comprehensive evaluation of their bioconcentration properties. The anal. method developed in the present study is sufficiently accurate, sensitive, and rapid, and thus highly useful for the comprehensive evaluation of PPCP residues in fish and would aid in future exposome and risk assessment. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Recommanded Product: 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Recommanded Product: 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wielens Becker, Raquel et al. published their research in Science of the Total Environment in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Reference of 83799-24-0

Multi-criteria decision-making techniques associated with (Q)SAR risk assessment for ranking surface water microcontaminants identified using LC-QTOF MS was written by Wielens Becker, Raquel;Alves Jachstet, Leticia;Dallegrave, Alexsandro;Ruiz-Padillo, Alejandro;Zanella, Renato;Sirtori, Carla. And the article was included in Science of the Total Environment in 2021.Reference of 83799-24-0 The following contents are mentioned in the article:

Contaminants of emerging concern (CECs) have been a focus of study for years, with investigations revealing the contamination of different environmental matrixes (surface water, soil, air, and sediment) by diverse classes of microcontaminants. Understanding the contamination profiles requires identification and risk assessment of the microcontaminants. In the present work, anal. was made of the presence of 3250 compounds in 27 samples from the Conceicao River (Rio Grande do Sul State, Brazil), using an SPE-LC-QTOF MS method. In total, 150 microcontaminants (confirmed and suspected) of different classes, especially pesticides and pharmaceuticals, were identified by an initial qual. anal. Subsequently, in silico predictions of eight endpoints, using quant. structure-activity relationship ((Q)SAR) models, were employed to determine the risk of each previously screened microcontaminant. This large amount of (Q)SAR data, frequently with conflicting information in relation to the responses of the different endpoints, makes it difficult to define which microcontaminants should be prioritized for anal. Therefore, in order to rank the identified microcontaminants by risk assessment, two multi-criteria decision-making (MCDM) ranking techniques (ToxPi and TOPSIS), associated with a weighting method, were performed to establish the order of priority for further quant. anal. of the most hazardous microcontaminants. The two rankings were statistically similar, especially for the 20 highest priority microcontaminants. Nonetheless, sensitivity tests carried out for the ToxPi and TOPSIS outputs showed higher performance robustness of TOPSIS, compared to ToxPi. This is the first time that such an approach (screening/(Q)SAR/MCDM methods) has been performed in the context of microcontaminant environmental risk evaluation and demonstrated to be an available strategy to help rank the most concern microcontaminants identified in aqueous environment samples. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Reference of 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Reference of 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Gosset, Antoine et al. published their research in Science of the Total Environment in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Product Details of 83799-24-0

Ecotoxicological risk assessment of contaminants of emerging concern identified by “suspect screening” from urban wastewater treatment plant effluents at a territorial scale was written by Gosset, Antoine;Wiest, Laure;Fildier, Aurelie;Libert, Christine;Giroud, Barbara;Hammada, Myriam;Herve, Matthieu;Sibeud, Elisabeth;Vulliet, Emmanuelle;Polome, Philippe;Perrodin, Yves. And the article was included in Science of the Total Environment in 2021.Product Details of 83799-24-0 The following contents are mentioned in the article:

Urban wastewater treatment plants (WWTP) are a major vector of highly ecotoxic contaminants of emerging concern (CECs) for urban and sub-urban streams. Ecotoxicol. risk assessments (ERAs) provide essential information to public environmental authorities. Nevertheless, ERAs are mainly performed at very local scale (one or few WWTPs) and on pre-selected list of CECs. To cope with these limits, the present study aims to develop a territorial-scale ERA on CECs previously identified by a “suspect screening” anal. approach (LC-QToF-MS) and quantified in the effluents of 10 WWTPs of a highly urbanized territory during three periods of the year. Among CECs, this work focused on pharmaceutical residue and pesticides. ERA was conducted following two complementary methods: (1) a single substance approach, based on the calculation for each CEC of risk quotients (RQs) by the ratio of Predicted Environmental Concentration (PEC) and Predicted No Effect Concentration (PNEC), and (2) mixture risk assessment (“cocktail effect”) based on a concentration addition model (CA), summing individual RQs. Chem. results led to an ERA for 41 CEC (37 pharmaceuticals and 4 pesticides) detected in treated effluents. Single substance ERA identified 19 CECs implicated in at least one significant risk for streams, with significant risks for DEET, diclofenac, lidocaine, atenolol, terbutryn, atorvastatin, methocarbamol, and venlafaxine (RQs reaching 39.84, 62.10, 125.58, 179.11, 348.24, 509.27, 1509.71 and 3097.37, resp.). Mixture ERA allowed the identification of a risk (RQmix > 1) for 9 of the 10 WWTPs studied. It was also remarked that CECs leading individually to a negligible risk could imply a significant risk in a mixture Finally, the territorial ERA showed a diversity of risk situations, with the highest concerns for 3 WWTPs: the 2 biggest of the territory discharging into a large French river, the Rhone, and for the smallest WWTP that releases into a small intermittent stream. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Product Details of 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Product Details of 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Cui, Zhen et al. published their research in Hypertension in 2021 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Formula: C16H20F3N3O3

Inhibition of Soluble Epoxide Hydrolase Attenuates Bosutinib-Induced Blood Pressure Elevation was written by Cui, Zhen;Li, Bochuan;Zhang, Yanhong;He, Jinlong;Shi, Xuelian;Wang, Hui;Zhao, Yinjiao;Yao, Liu;Ai, Ding;Zhang, Xu;Zhu, Yi. And the article was included in Hypertension in 2021.Formula: C16H20F3N3O3 The following contents are mentioned in the article:

Endothelial cells play a critical role in maintaining homeostasis of vascular function, and endothelial activation is involved in the initial step of atherogenesis. Previously, we reported that Abl kinase mediates shear stress-induced endothelial activation. Bosutinib, a dual inhibitor of Src and Abl kinases, exerts an atheroprotective effect; however, recent studies have demonstrated an increase in the incidence of side effects associated with bosutinib, including increased arterial blood pressure (BP). To understand the effects of bosutinib on BP regulation and the mechanistic basis for novel treatment strategies against vascular dysfunction, we generated a line of mice conditionally lacking c-Abl in endothelial cells (endothelial cell-AblKO). Knockout mice and their wild-type littermates (Ablf/f) were orally administered a clin. dose of bosutinib, and their BP was monitored. Bosutinib treatment increased BP in both endothelial cell-AblKO and Ablf/f mice. Furthermore, acetylcholine-evoked endothelium-dependent relaxation of the mesenteric arteries was impaired by bosutinib treatment. RNA sequencing of mesenteric arteries revealed that the CYP (cytochrome P 450)-dependent metabolic pathway was involved in regulating BP after bosutinib treatment. Addnl., bosutinib treatment led to an upregulation of soluble epoxide hydrolase in the arteries and a lower plasma content of eicosanoid metabolites in the CYP pathway in mice. Treatment with 1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea, a soluble epoxide hydrolase inhibitor, reversed the bosutinib-induced changes to the eicosanoid metabolite profile, endothelium-dependent vasorelaxation, and BP. Thus, the present study demonstrates that upregulation of soluble epoxide hydrolase mediates bosutinib-induced elevation of BP, independent of c-Abl. The addition of soluble epoxide hydrolase inhibitor in patients treated with bosutinib may aid in preventing vascular side effects. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Formula: C16H20F3N3O3).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Formula: C16H20F3N3O3

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Verhellen, Jonas et al. published their research in Chemical Science in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Application of 83799-24-0

Graph-based molecular Pareto optimization was written by Verhellen, Jonas. And the article was included in Chemical Science in 2022.Application of 83799-24-0 The following contents are mentioned in the article:

Computer-assisted design of small mols. has experienced a resurgence in academic and industrial interest due to the widespread use of data-driven techniques such as deep generative models. While the ability to generate mols. that fulfil required chem. properties is encouraging, the use of deep learning models requires significant, if not prohibitive, amounts of data and computational power. At the same time, open-sourcing of more traditional techniques such as graph-based genetic algorithms for mol. optimization [Jensen, Chem. Sci., 2019, 12, 3567-3572] has shown that simple and training-free algorithms can be efficient and robust alternatives. Further research alleviated the common genetic algorithm issue of evolutionary stagnation by enforcing mol. diversity during optimization [Van den Abeele, Chem. Sci., 2020, 42, 11485-11491]. The crucial lesson distilled from the simultaneous development of deep generative models and advanced genetic algorithms has been the importance of chem. space exploration [Aspuru-Guzik, Chem. Sci., 2021, 12, 7079-7090]. For single-objective optimization problems, chem. space exploration had to be discovered as a useable resource but in multi-objective optimization problems, an exploration of trade-offs between conflicting objectives is inherently present. In this paper we provide state-of-the-art and open-source implementations of two generations of graph-based non-dominated sorting genetic algorithms (NSGA-II, NSGA-III) for mol. multi-objective optimization. We provide the results of a series of benchmarks for the inverse design of small mol. drugs for both the NSGA-II and NSGA-III algorithms. In addition, we introduce the dominated hypervolume and extended fingerprint based internal similarity as novel metrics for these benchmarks. By design, NSGA-II, and NSGA-III outperform a single optimization method baseline in terms of dominated hypervolume, but remarkably our results show they do so without relying on a greater internal chem. diversity. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Application of 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Application of 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Krawinkler, Karl Heinz et al. published their research in Journal of Chromatography A in 2004 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.COA of Formula: C21H21NO4

Novel urea-linked cinchona-calixarene hybrid-type receptors for efficient chromatographic enantiomer separation of carbamate-protected cyclic amino acids was written by Krawinkler, Karl Heinz;Maier, Norbert M.;Sajovic, Elisabeth;Lindner, Wolfgang. And the article was included in Journal of Chromatography A in 2004.COA of Formula: C21H21NO4 The following contents are mentioned in the article:

Two novel diastereomeric cinchona-calixarene hybrid-type receptors (SOs) were synthesized by inter-linking 9-amino(9-deoxy)-quinine (AQN)/9-amino(9-deoxy)-epiquinine (eAQN) and a calix[4]arene scaffold via an urea functional unit. Silica-supported chiral stationary phases (CSPs) derived from these SOs revealed, for N-protected amino acids, complementary chiral recognition profiles in terms of elution order and substrate specificity. The AQN-derived CSP showed narrow-scoped enantioselectivity for open-chained amino acids bearing π-acidic aromatic protecting groups, preferentially binding the (S)-enantiomers. In contrast, the eAQN congener exhibited broad chiral recognition capacity for open-chained as well as cyclic amino acids, and preferential binding of the (R)-enantiomers. Exceedingly strong retention due to nonenantioselective hydrophobic analyte-calixarene interactions observed with hydro-organic mobile phases could be largely suppressed with organic mobile phases containing small amounts of acetic acid as acidic modifier. With the eAQN-calixarene hybrid-type CSP particularly high levels of enantioselectivity could be achieved for tert-butoxycarbonyl (Boc)-, benzyloxycarbonyl (Z)- and fluorenylmethoxycarbonyl (Fmoc)-protected cyclic amino acids using chloroform as mobile phase, e.g. an enantioselectivty factor α > 5.0 for Boc-proline. Increasing amounts of acetic acid compromised enantioselectivity, indicating the crucial contributions of hydrogen bonding to chiral recognition. Comparison of the performance characteristics of the urea-linked eAQN-calixarene hybrid-type CSP with those of structurally closely related mutants provided evidence for the active involvement of the urea and calixarene units in the chiral recognition process. The urea linker motif was shown to contribute to analyte binding via multiple hydrogen bonding interactions, while the calixarene module is believed to support stereodiscrimination by enhancing the shape complementarity of the SO binding site. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5COA of Formula: C21H21NO4).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.COA of Formula: C21H21NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem