An, Guohua et al. published their research in Journal of Clinical Pharmacology in 2021 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Target-Mediated Drug Disposition-A Class Effect of Soluble Epoxide Hydrolase Inhibitors was written by An, Guohua;Lee, Kin Sing Stephen;Yang, Jun;Hammock, Bruce D.. And the article was included in Journal of Clinical Pharmacology in 2021.Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea The following contents are mentioned in the article:

A review. Pharmacol. target-mediated drug disposition (TMDD) represents a special source of nonlinear pharmacokinetics, and its occurrence in large-mol. compounds has been well recognized because numerous protein drugs have been reported to have TMDD due to specific binding to their pharmacol. targets. Although TMDD can also happen in small-mol. compounds, it has been largely overlooked. In this mini-review, we summarize the occurrence of TMDD that we discovered recently in a series of small-mol. soluble epoxide hydrolase (sEH) inhibitors. Our journey started with an accidental discovery of target-mediated kinetics of 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU), a potent sEH inhibitor, in a pilot clin. study. To confirm what we observed in humans, we conducted a series of mechanism experiments in animals, including pharmacokinetic experiments using sEH knockout mice as well as in vivo displacement experiments with co-administration of another potent sEH inhibitor. Our mechanism studies confirmed that the TMDD of TPPU is due to its pharmacol. target sEH. We further expanded our evaluation to various other sEH inhibitors and found that TMDD is a class effect of this group of small-mol. sEH inhibitors. In addition to summarizing the occurrence of TMDD in sEH inhibitors, in this mini-review we also highlighted the importance of recognizing TMDD of small-mol. compounds and its impact in clin. development as well as using pharmacometric modeling in facilitating quant. understanding of TMDD. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Recommanded Product: 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Guo, Yuan et al. published their research in Journal of Cellular and Molecular Medicine in 2018 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.SDS of cas: 1222780-33-7

TPPU enhanced exercise-induced epoxyeicosatrienoic acid concentrations to exert cardioprotection in mice after myocardial infarction was written by Guo, Yuan;Luo, Fei;Zhang, Xv;Chen, Jingyuan;Shen, Li;Zhu, Yi;Xu, Danyan. And the article was included in Journal of Cellular and Molecular Medicine in 2018.SDS of cas: 1222780-33-7 The following contents are mentioned in the article:

Exercise training (ET) is a safe and efficacious therapeutic approach for myocardial infarction (MI). Given the numerous benefits of exercise, exercise-induced mediators may be promising treatment targets for MI. C57BL/6 mice were fed 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHI), to increase epoxyeicosatrienoic acid (EET) levels, for 1 wk before undergoing MI surgery. After 1-wk recovery, the mice followed a prescribed exercise program. Bone marrow-derived endothelial progenitor cells (EPCs) were isolated from the mice after 4 wk of exercise and cultured for 7 days. Angiogenesis around the ischemic area, EPC functions, and the expression of microRNA-126 (miR-126) and its target gene Spred1 were measured. The results were confirmed in vitro by adding TPPU to EPC culture medium. ET significantly increased serum EET levels and promoted angiogenesis after MI. TPPU enhanced the effects of ET to reduce the infarct area and improve cardiac function after MI. ET increased EPC function and miR-126 expression, which were further enhanced by TPPU, while Spred1 expression was significantly down-regulated. Addnl., the protein kinase B/glycogen synthase kinase 3β (AKT/GSK3β) signalling pathway was activated after the administration of TPPU. EETs are a potential mediator of exercise-induced cardioprotection in mice after MI. TPPU enhances exercise-induced cardiac recovery in mice after MI by increasing EET levels and promoting angiogenesis around the ischemic area. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7SDS of cas: 1222780-33-7).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.SDS of cas: 1222780-33-7

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Liu, Tao et al. published their research in ACS Combinatorial Science in 2011 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Synthetic Route of C21H21NO4

High-Throughput Screening of One-Bead-One-Compound Libraries: Identification of Cyclic Peptidyl Inhibitors against Calcineurin/NFAT Interaction was written by Liu, Tao;Qian, Ziqing;Xiao, Qing;Pei, Dehua. And the article was included in ACS Combinatorial Science in 2011.Synthetic Route of C21H21NO4 The following contents are mentioned in the article:

One-bead-one-compound (OBOC) libraries provide a powerful tool for drug discovery as well as biomedical research. However, screening a large number of beads/compounds (>1 million) and rank ordering the initial hits (which are covalently attached to a solid support) according to their potencies still pose significant tech. challenges. In this work, we have integrated some of the latest tech. advances from our own as well as other laboratories to develop a general methodol. for rapidly screening large OBOC libraries. The methodol. has been applied to synthesize and screen a cyclic peptide library that features: (1) spatially segregated beads containing cyclic peptides on the surface layer and linear encoding peptides in their interior; (2) rapid on-bead screening of the library (>1 million) by a multistage procedure (magnetic bead sorting, enzyme-linked assay, and fluorescence based screening); (3) selective release of cyclic peptides from single pos. beads for solution-phase determination of their binding affinities; and (4) hit identification by partial Edman degradation/mass spectrometry (PED/MS). Screening of the library against protein phosphatase calcineurin (Cn) identified a series of cyclic peptides that bind to the substrate-docking site for nuclear factor of activated T cells (NFAT) with KD values of ∼1 μM. Further improvement of the affinity and specificity of these compounds may lead to a new class of immunosuppressive agents that are more selective and therefore less toxic than cyclosporine A and FK506. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Synthetic Route of C21H21NO4).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.Synthetic Route of C21H21NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Liu, Tao et al. published their research in ACS Combinatorial Science in 2011 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Electric Literature of C21H21NO4

High-Throughput Screening of One-Bead-One-Compound Libraries: Identification of Cyclic Peptidyl Inhibitors against Calcineurin/NFAT Interaction was written by Liu, Tao;Qian, Ziqing;Xiao, Qing;Pei, Dehua. And the article was included in ACS Combinatorial Science in 2011.Electric Literature of C21H21NO4 The following contents are mentioned in the article:

One-bead-one-compound (OBOC) libraries provide a powerful tool for drug discovery as well as biomedical research. However, screening a large number of beads/compounds (>1 million) and rank ordering the initial hits (which are covalently attached to a solid support) according to their potencies still pose significant tech. challenges. In this work, we have integrated some of the latest tech. advances from our own as well as other laboratories to develop a general methodol. for rapidly screening large OBOC libraries. The methodol. has been applied to synthesize and screen a cyclic peptide library that features: (1) spatially segregated beads containing cyclic peptides on the surface layer and linear encoding peptides in their interior; (2) rapid on-bead screening of the library (>1 million) by a multistage procedure (magnetic bead sorting, enzyme-linked assay, and fluorescence based screening); (3) selective release of cyclic peptides from single pos. beads for solution-phase determination of their binding affinities; and (4) hit identification by partial Edman degradation/mass spectrometry (PED/MS). Screening of the library against protein phosphatase calcineurin (Cn) identified a series of cyclic peptides that bind to the substrate-docking site for nuclear factor of activated T cells (NFAT) with KD values of ∼1 μM. Further improvement of the affinity and specificity of these compounds may lead to a new class of immunosuppressive agents that are more selective and therefore less toxic than cyclosporine A and FK506. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Electric Literature of C21H21NO4).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Electric Literature of C21H21NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wang, Xiaojing et al. published their research in Scandinavian Journal of Immunology in 2019 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.SDS of cas: 1222780-33-7

Epoxyeicosatrienoic acids alleviate methionine-choline-deficient diet-induced non-alcoholic steatohepatitis in mice was written by Wang, Xiaojing;Li, Lan;Wang, Hongwu;Xiao, Fang;Ning, Qin. And the article was included in Scandinavian Journal of Immunology in 2019.SDS of cas: 1222780-33-7 The following contents are mentioned in the article:

The epoxyeicosatrienoic acids (EETs) are products of cytochrome P 450 epoxygenases and have recently been found to have an anti-inflammatory activity. However, the role of EETs in non-alc. steatohepatitis has not been fully understood. In this study, we investigated the protective role of EETs in methionine-choline-deficient (MCD) diet-induced non-alc. steatohepatitis (NASH) in mice and the potential mechanisms. We used 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea(TPPU), a soluble epoxide hydrolase inhibitor, to increase the endogenous EET level in mice. Upon TPPU treatment, the liver steatosis and inflammatory damage were significantly ameliorated in mice with steatohepatitis, paralleled by the downregulation of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) as well as chemokines (CXCL1, MCP-1). Compared with untreated NASH mice, mRNA levels of sterol regulatory element binding protein 1c (SREBP1c) and inflammation relevant adhesion mols. (ICAM-1, VCAM-1) were downregulated, whereas mRNA level of peroxisome proliferator-activated receptor α(PPAR-α) was elevated in TPPU-treated mice. In vitro, 11,12-EET treatment remarkably attenuated free fatty acid (FFA)-induced inflammation in HepG2 and THP-1 cells. Further, 11,12-EET inhibited the activation of NF-kappaB signalling pathway in macrophages from mice with steatohepatitis. Collectively, these results suggest that EETs play a protective role and alleviate the MCD diet-induced steatohepatitis in mice mainly by downregulating activation of NF-κB pathway in macrophages. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7SDS of cas: 1222780-33-7).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.SDS of cas: 1222780-33-7

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

El-Deen, Asmaa Kamal et al. published their research in Journal of Chromatography A in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Related Products of 83799-24-0

Suspect and non-target screening workflow for studying the occurrence, fate, and environmental risk of contaminants in wastewater using data-independent acquisition was written by El-Deen, Asmaa Kamal;Shimizu, Kuniyoshi. And the article was included in Journal of Chromatography A in 2022.Related Products of 83799-24-0 The following contents are mentioned in the article:

A comprehensive suspect and non-target screening workflow based on liquid chromatog. coupled to a quadrupole-time-of-flight mass spectrometer was developed for the detection and identification of contaminants in wastewater using data-independent acquisition. The suspect screening workflow could identify 74 compounds from different classes (mainly pharmaceuticals and pesticides), of which37 compounds were confirmed by reference standards The remaining 37 compounds were tentatively identified based on MS/MS spectra match. The occurrence and elimination of the identified compounds were studied and discussed in detail. Furthermore, the confirmed compounds were quantified where pharmaceuticals had the greatest overall concentrations in all samples, followed by flame retardants. The non-steroidal antiandrogen, bicalutamide, was detected at the highest concentration (843.9 to 3838 ng/L) at the wastewater effluents, where the flame retardant, tris(2-butoxyethyl) phosphate, exhibited a concentration in the range of 337.2 to 1304.6 ng/L. Consequently, the environmental toxicity and risk of the confirmed compounds were investigated. The pharmaceutical, telmisartan, with the insecticide, fipronil exhibited high-risk quotients ( 600∼1400 and 102∼290, resp.), demonstrating their potential toxicity at ecol. relevant amounts Finally, multivariate anal. was applied to evaluate the efficiency of wastewater treatment . Principal component anal. was able to clearly discriminate between influent and effluent samples, demonstrating an effective treatment process.. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Related Products of 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Related Products of 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Kuwayama, Kenji et al. published their research in Drug Testing and Analysis in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Development of an improved method to estimate the days of continuous drug ingestion, based on the micro-segmental hair analysis was written by Kuwayama, Kenji;Miyaguchi, Hajime;Kanamori, Tatsuyuki;Tsujikawa, Kenji;Yamamuro, Tadashi;Segawa, Hiroki;Okada, Yuki;Iwata, Yuko T.. And the article was included in Drug Testing and Analysis in 2021.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

To prove drug-related crimes, it is important to estimate the date on which a specific drug was ingested. Previously, we developed a method, “micro-segmental hair anal.”, to estimate the day of ingestion of a single-dose drug by segmenting a hair strand into 0.4-mm segments, which correspond to daily hair growth. In this study, the method was improved to estimate the days of continuous drug ingestion. The subjects ingested four hay-fever medicines (fexofenadine, epinastine, cetirizine, and loratadine) continuously (1-18 days) and chlorpheniramine as a single dose at intervals of several weeks as an internal temporal marker (ITM). The hair strands of the subjects were collected and subjected to a micro-segmental anal. The distribution curves of each hay-fever medicine in a hair strand had broad peaks reflecting the number of days of drug ingestion. The positions on the curves corresponding to the first and final ingestion days of hay-fever medicines were identified using the ITM. The positions were near the hair segments on both ends of full width at half maximum (W2) of the broad peak. When the first and final days of continuous ingestion were estimated using W2, independent of peak shape, the absolute average error from the actual ingestion days was approx. 2 days. Overall, we established a method to estimate the days of both single-dose and continuous drug ingestions. Furthermore, the method would be useful to investigate drug ingestion history in various scenes such as drug-related crimes and therapeutic drug monitoring. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Application In Synthesis of 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Payne, Emory M. et al. published their research in Analyst (Cambridge, United Kingdom) in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Continuous and automated slug flow nanoextraction for rapid partition coefficient measurement was written by Payne, Emory M.;Wells, Shane S.;Kennedy, Robert T.. And the article was included in Analyst (Cambridge, United Kingdom) in 2021.Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

Octanol-water partition coefficients (log Kow) are widely used in pharmaceutical and environmental chem. to assess the lipophilicity of compounds Traditionally log Kow is determined using a shake-flask method that uses milliliters of sample and solvent and requires hours for preparation, extraction, and anal. Here, an automated system is reported for rapid log Kow determination for an array of compounds using slug flow nanoextn. (SFNE) enabled by a microfluidic chip. In the method, an autosampler is used to introduce 1μL of sample into a microfluidic device that segments the injected volume into a series of 4 nL slugs that are each paired to an adjacent octanol slug. Each octanol-water phase pair is compartmentalized by an immiscible fluorous carrier fluid. During flow, rapid extraction occurs at each octanol-water interface. The resulting linear array of slugs flows into an online UV absorbance detector that is used to determine concentrations in the phases, allowing the log Kow to be measured. The microfluidic device allows toggling between two-phase “aqueous plug” generation (aqueous sample separated by fluorous carrier fluid) and three-phase “phase pair” generation. In this way, online calibration for detection in the aqueous phase can be achieved. The method is applied to determining log Kow for a panel of seven pharmaceutical compounds, including complete calibration curves, at three different pHs in under 2 h using 5μL of extraction standard and 2.9μL of octanol per extraction standard analyzed. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine is a metabolite of cadaverine, a polyamine found in the human intestine. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising α-glucosidase inhibitors. The former are analogs of DNJ with an improved α-glucosidase inhibitory profile than that of DNJ. Boisson et al.Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhou, Chi et al. published their research in Alcoholism: Clinical & Experimental Research in 2018 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Safety of 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Chronic Ethanol-Induced Cardiac Fibrosis by Restoring Autophagic Flux was written by Zhou, Chi;Huang, Jin;Li, Qing;Zhan, Chenao;He, Ying;Liu, Jinyan;Wen, Zheng;Wang, Dao Wen. And the article was included in Alcoholism: Clinical & Experimental Research in 2018.Safety of 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea The following contents are mentioned in the article:

Background : Chronic drinking leads to myocardial contractile dysfunction and dilated cardiomyopathy, and cardiac fibrosis is a consequence of these alc. injuries. Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) to less bioactive diols, and EETs have cardioprotective properties. However, the effects of sEH inhibition in ethanol (EtOH)-induced cardiac fibrosis are unknown. Methods : This study was designed to investigate the role and underlying mechanisms of sEH inhibition in chronic EtOH feeding-induced cardiac fibrosis. C57BL/6J mice were fed a 4% Lieber-DeCarli EtOH diet for 8 wk, and the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered throughout the exptl. period. Results : The results showed that chronic EtOH intake led to cardiac dilatation, collagen deposition, and autophagosome accumulation, while TPPU administration ameliorated these effects. In vitro, treating primary cardiac fibroblasts (CFs) with EtOH resulted in CF activation, including alpha smooth muscle actin overexpression, collagen synthesis, and cell migration. Moreover, EtOH disturbed CF autophagic flux, as evidenced by the increased LC3 II/I ratio and SQSTM1 expression, and by the enhanced autophagosome accumulation. TPPU treatment prevented the activation of CF induced by EtOH and restored the impaired autophagic flux by suppressing mTOR activation. Conclusions : Taken together, these findings suggest that sEH pharmacol. inhibition may be a unique therapeutic strategy for treating EtOH-induced cardiac fibrosis. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Safety of 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Safety of 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Shchulkin, A. V. et al. published their research in Biochemistry (Moscow), Supplement Series A in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Recommanded Product: 83799-24-0

The Effect of Oxidative Stress on the Transport of the P-Glycoprotein Substrate through the Cell Monolayer was written by Shchulkin, A. V.;Abalenikhina, Yu. V.;Seidkulieva, A. A.;Chernykh, I. V.;Yakusheva, E. N.. And the article was included in Biochemistry (Moscow), Supplement Series A in 2021.Recommanded Product: 83799-24-0 The following contents are mentioned in the article:

P-glycoprotein (Pgp) is an ATP-dependent transmembrane protein involved in the efflux of lipophilic substances. The aim of this study was to evaluate the effect of oxidative stress on the transport of a Pgp substrate through the monolayer of Caco-2 cells overexpressing this transport protein. Oxidative stress was modeled by incubating the cells with H2O2. Exposure to H2O2 at concentrations of 10 and 50 μM for 3 h reduced the Pgp activity but not the content of Pgp, while the integrity of the cell monolayer did not change. The increase of the prooxidant concentration to 100 μM reduced the content of Pgp, violated the integrity of the cell monolayer, and increased the transcellular and paracellular transport of fexofenadine. A 24-h exposure to 0.1-1 μM H2O2 resulted in an increase in the content of Pgp mediated by the Nrf2 transcription factor, while the activity of the transport protein remained unchanged. At a prooxidant concentration of 10 μM, the Pgp activity decreased and the cell membrane permeability increased, while at concentrations of 50-100 μM, the content (100 μM) and activity of Pgp decreased, and the paracellular and transcellular permeability of the cell monolayer increased for fexofenadine, a substrate of the transport protein. Thus, H2O2 increased the transport of the Pgp substrate fexofenadine through the cell monolayer by inhibiting the activity of the transport protein, reducing its content, as well as violating the integrity of the cell membrane and intercellular contacts. The cells can adapt to these effects by increasing the content of Pgp. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Recommanded Product: 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Recommanded Product: 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem