Wood, Thomas M. et al. published their research in Organic & Biomolecular Chemistry in 2020 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Quality Control of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

The contribution of achiral residues in the laspartomycin family of calcium-dependent lipopeptide antibiotics was written by Wood, Thomas M.;Bertheussen, Kristine;Martin, Nathaniel I.. And the article was included in Organic & Biomolecular Chemistry in 2020.Quality Control of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

The growing threat of antibacterial resistance is a global concern. The so-called calcium-dependent lipopeptide antibiotics (CDAs) have emerged as a promising source of new antibiotic agents that are rich in structural and mechanistic diversity. Over forty unique CDAs have been identified to date and share a number of common features. Recent efforts in our group have provided new mechanistic and structural insights into the laspartomycin family of CDAs. We here describe investigations aimed at probing the role of the three glycine residues found in the laspartomycin peptide macrocycle. In doing so laspartomycin analogs containing the achiral 2-aminoisobutyric acid (AIB) as well as L– or D-alanine in place of glycine were prepared and their antibacterial activities evaluated. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Quality Control of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Quality Control of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Bauder, Michael et al. published their research in Journal of Medicinal Chemistry in 2021 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.COA of Formula: C21H21NO4

Structure-Based Design of High-Affinity Macrocyclic FKBP51 Inhibitors was written by Bauder, Michael;Meyners, Christian;Purder, Patrick L.;Merz, Stephanie;Sugiarto, Wisely Oki;Voll, Andreas M.;Heymann, Tim;Hausch, Felix. And the article was included in Journal of Medicinal Chemistry in 2021.COA of Formula: C21H21NO4 The following contents are mentioned in the article:

The FK506-binding protein 51 (FKBP51) emerged as a key player in several diseases like stress-related disorders, chronic pain, and obesity. Linear analogs of FK506 called SAFit were shown to be highly selective for FKBP51 over its closest homolog FKBP52, allowing the proof-of-concept studies in animal models. Here, we designed and synthesized the first macrocyclic FKBP51-selective ligands to stabilize the active conformation. All macrocycles retained full FKBP51 affinity and selectivity over FKBP52 and the incorporation of polar functionalities further enhanced affinity. Six high-resolution crystal structures of macrocyclic inhibitors in complex with FKBP51 confirmed the desired selectivity-enabling binding mode. Our results show that macrocyclization is a viable strategy to target the shallow FKBP51 binding site selectively. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5COA of Formula: C21H21NO4).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.COA of Formula: C21H21NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Bauder, Michael et al. published their research in Journal of Medicinal Chemistry in 2021 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.COA of Formula: C21H21NO4

Structure-Based Design of High-Affinity Macrocyclic FKBP51 Inhibitors was written by Bauder, Michael;Meyners, Christian;Purder, Patrick L.;Merz, Stephanie;Sugiarto, Wisely Oki;Voll, Andreas M.;Heymann, Tim;Hausch, Felix. And the article was included in Journal of Medicinal Chemistry in 2021.COA of Formula: C21H21NO4 The following contents are mentioned in the article:

The FK506-binding protein 51 (FKBP51) emerged as a key player in several diseases like stress-related disorders, chronic pain, and obesity. Linear analogs of FK506 called SAFit were shown to be highly selective for FKBP51 over its closest homolog FKBP52, allowing the proof-of-concept studies in animal models. Here, we designed and synthesized the first macrocyclic FKBP51-selective ligands to stabilize the active conformation. All macrocycles retained full FKBP51 affinity and selectivity over FKBP52 and the incorporation of polar functionalities further enhanced affinity. Six high-resolution crystal structures of macrocyclic inhibitors in complex with FKBP51 confirmed the desired selectivity-enabling binding mode. Our results show that macrocyclization is a viable strategy to target the shallow FKBP51 binding site selectively. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5COA of Formula: C21H21NO4).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.COA of Formula: C21H21NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wolfson, Anna R. et al. published their research in JAMA, the Journal of the American Medical Association in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Urticaria 12 days after COVID-19 mRNA booster vaccination was written by Wolfson, Anna R.;Freeman, Esther E.;Blumenthal, Kimberly G.. And the article was included in JAMA, the Journal of the American Medical Association in 2022.Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid The following contents are mentioned in the article:

A healthy 27-yr-old woman received a COVID-19 mRNA booster vaccine (Moderna) on Dec. 7, 2021. She had not experienced adverse effects after the first 2 vaccine doses on Jan. 17 and Feb. 5, 2021. Twelve days after the booster vaccination, she developed pruritic wheals on her face and bilateral, transient eyelid swelling. The patient’s urticaria did not resolve with standard-dose fexofenadine (180 mg daily) or with 4 times the standard dose, so montelukast(10 mg nightly) and an addition almidday dose of 360 mg fexofenadine was added. Two weeks after receiving omalizumab,her dermatographism resolved. Fexofenadine was decreased to 180 mg twice daily and continued omalizumab monthly for a total of 3 doses. She was counseled to increase her dose of non-sedating antihistamines starting 3 days prior to another COVID-19 mRNA vaccination. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine ring can be found not only in more than half of the currently known structures of alkaloids, but also in many natural or synthetic compounds with interesting biological activities. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Name: 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yang, Wu et al. published their research in Journal of Medicinal Chemistry in 2000 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Investigating Protein-Ligand Interactions with a Mutant FKBP Possessing a Designed Specificity Pocket was written by Yang, Wu;Rozamus, Leonard W.;Narula, Surinder;Rollins, Carl T.;Yuan, Ruth;Andrade, Lawrence J.;Ram, Mary K.;Phillips, Thomas B.;Van Schravendijk, Marie Rose;Dalgarno, David;Clackson, Tim;Holt, Dennis A.. And the article was included in Journal of Medicinal Chemistry in 2000.Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

Using structure-based design and protein mutagenesis we have remodeled the FKBP12 ligand binding site to include a sizable, hydrophobic specificity pocket. This mutant (F36V-FKBP) is capable of binding, with low or subnanomolar affinities, novel synthetic ligands possessing designed substituents that sterically prevent binding to the wild-type protein. Using binding and structural anal. of bumped compounds, we show here that the pocket is highly promiscuous-capable of binding a range of hydrophobic alkyl and aryl moieties with comparable affinity. Ligand affinity therefore appears largely insensitive to the degree of occupancy or quality of packing of the pocket. NMR spectroscopic anal. indicates that similar ligands can adopt radically different binding modes, thus complicating the interpretation of structure-activity relationships. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine derivatives bearing a masked aldehyde function in the ε-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yang, Wu et al. published their research in Journal of Medicinal Chemistry in 2000 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.HPLC of Formula: 86069-86-5

Investigating Protein-Ligand Interactions with a Mutant FKBP Possessing a Designed Specificity Pocket was written by Yang, Wu;Rozamus, Leonard W.;Narula, Surinder;Rollins, Carl T.;Yuan, Ruth;Andrade, Lawrence J.;Ram, Mary K.;Phillips, Thomas B.;Van Schravendijk, Marie Rose;Dalgarno, David;Clackson, Tim;Holt, Dennis A.. And the article was included in Journal of Medicinal Chemistry in 2000.HPLC of Formula: 86069-86-5 The following contents are mentioned in the article:

Using structure-based design and protein mutagenesis we have remodeled the FKBP12 ligand binding site to include a sizable, hydrophobic specificity pocket. This mutant (F36V-FKBP) is capable of binding, with low or subnanomolar affinities, novel synthetic ligands possessing designed substituents that sterically prevent binding to the wild-type protein. Using binding and structural anal. of bumped compounds, we show here that the pocket is highly promiscuous-capable of binding a range of hydrophobic alkyl and aryl moieties with comparable affinity. Ligand affinity therefore appears largely insensitive to the degree of occupancy or quality of packing of the pocket. NMR spectroscopic anal. indicates that similar ligands can adopt radically different binding modes, thus complicating the interpretation of structure-activity relationships. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5HPLC of Formula: 86069-86-5).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N–H bond in an axial position, and the other in an equatorial position.HPLC of Formula: 86069-86-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Pinch, Benika J. et al. published their research in Nature Chemical Biology | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.HPLC of Formula: 86069-86-5

Identification of a potent and selective covalent Pin1 inhibitor was written by Pinch, Benika J.;Doctor, Zainab M.;Nabet, Behnam;Browne, Christopher M.;Seo, Hyuk-Soo;Mohardt, Mikaela L.;Kozono, Shingo;Lian, Xiaolan;Manz, Theresa D.;Chun, Yujin;Kibe, Shin;Zaidman, Daniel;Daitchman, Dina;Yeoh, Zoe C.;Vangos, Nicholas E.;Geffken, Ezekiel A.;Tan, Li;Ficarro, Scott B.;London, Nir;Marto, Jarrod A.;Buratowski, Stephen;Dhe-Paganon, Sirano;Zhou, Xiao Zhen;Lu, Kun Ping;Gray, Nathanael S.. And the article was included in Nature Chemical Biology.HPLC of Formula: 86069-86-5 The following contents are mentioned in the article:

Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is commonly over-expressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). While Pin1 is dispensable for viability in mice, it is required for activated Ras to induce tumorigenesis, suggesting a role for Pin1 inhibitors in Ras-driven tumors, such as PDAC. We report the development of rationally designed peptide inhibitors that covalently target Cys113, a highly conserved cysteine located in the Pin1 active site. The inhibitors were iteratively optimized for potency, selectivity and cell permeability to give BJP-06-005-3, a versatile tool compound with which to probe Pin1 biol. and interrogate its role in cancer. In parallel to inhibitor development, we employed genetic and chem.-genetic strategies to assess the consequences of Pin1 loss in human PDAC cell lines. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5HPLC of Formula: 86069-86-5).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.HPLC of Formula: 86069-86-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Pinch, Benika J. et al. published their research in Nature Chemical Biology | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Name: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Identification of a potent and selective covalent Pin1 inhibitor was written by Pinch, Benika J.;Doctor, Zainab M.;Nabet, Behnam;Browne, Christopher M.;Seo, Hyuk-Soo;Mohardt, Mikaela L.;Kozono, Shingo;Lian, Xiaolan;Manz, Theresa D.;Chun, Yujin;Kibe, Shin;Zaidman, Daniel;Daitchman, Dina;Yeoh, Zoe C.;Vangos, Nicholas E.;Geffken, Ezekiel A.;Tan, Li;Ficarro, Scott B.;London, Nir;Marto, Jarrod A.;Buratowski, Stephen;Dhe-Paganon, Sirano;Zhou, Xiao Zhen;Lu, Kun Ping;Gray, Nathanael S.. And the article was included in Nature Chemical Biology.Name: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is commonly over-expressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). While Pin1 is dispensable for viability in mice, it is required for activated Ras to induce tumorigenesis, suggesting a role for Pin1 inhibitors in Ras-driven tumors, such as PDAC. We report the development of rationally designed peptide inhibitors that covalently target Cys113, a highly conserved cysteine located in the Pin1 active site. The inhibitors were iteratively optimized for potency, selectivity and cell permeability to give BJP-06-005-3, a versatile tool compound with which to probe Pin1 biol. and interrogate its role in cancer. In parallel to inhibitor development, we employed genetic and chem.-genetic strategies to assess the consequences of Pin1 loss in human PDAC cell lines. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Name: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine and its derivatives have become increasingly popular in many synthetic schemes. Some chemotherapeutic agents have piperidine moiety within their structure, foremost among them, vinblastine and raloxifene.Name: (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Joergensen, Frederik Praestholm et al. published their research in Journal of Medicinal Chemistry in 2019 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Recommanded Product: 86069-86-5

Synthesis of Shld Derivatives, Their Binding to the Destabilizing Domain, and Influence on Protein Accumulation in Transgenic Plants was written by Joergensen, Frederik Praestholm;Madsen, Daniel;Meldal, Morten;Olsen, Jacob Valdbjoern;Petersen, Morten;Granhoej, Jeppe;Bols, Mikael. And the article was included in Journal of Medicinal Chemistry in 2019.Recommanded Product: 86069-86-5 The following contents are mentioned in the article:

A series of 35 analogs of Shld with modifications in the A-residue and the C-residues were prepared and investigated for binding to FKBP and GFP accumulation in transgenic plants. The modifications investigated explored variations that were supposedly inside or outside the receptor binding site with the latter being important by influencing the overall polarity of the compounds in order to improve the absorption in plants. The binding of the new compounds to the destabilizing domain was determined using a fluorescence polarization competition assay, and the GFP expression in engineered Arabidopsis thaliana was studied. The results showed that modifications of the C-building block phenol with acidic, basic, and neutral groups led to better ligands with some being better than Shld in the plant. Generally small, polar substituents showed the best GFP accumulation. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Recommanded Product: 86069-86-5).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Recommanded Product: 86069-86-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Joergensen, Frederik Praestholm et al. published their research in Journal of Medicinal Chemistry in 2019 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Safety of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Synthesis of Shld Derivatives, Their Binding to the Destabilizing Domain, and Influence on Protein Accumulation in Transgenic Plants was written by Joergensen, Frederik Praestholm;Madsen, Daniel;Meldal, Morten;Olsen, Jacob Valdbjoern;Petersen, Morten;Granhoej, Jeppe;Bols, Mikael. And the article was included in Journal of Medicinal Chemistry in 2019.Safety of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

A series of 35 analogs of Shld with modifications in the A-residue and the C-residues were prepared and investigated for binding to FKBP and GFP accumulation in transgenic plants. The modifications investigated explored variations that were supposedly inside or outside the receptor binding site with the latter being important by influencing the overall polarity of the compounds in order to improve the absorption in plants. The binding of the new compounds to the destabilizing domain was determined using a fluorescence polarization competition assay, and the GFP expression in engineered Arabidopsis thaliana was studied. The results showed that modifications of the C-building block phenol with acidic, basic, and neutral groups led to better ligands with some being better than Shld in the plant. Generally small, polar substituents showed the best GFP accumulation. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Safety of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Several piperidine alkaloids isolated from natural herbs, were found to exhibit antiproliferation and antimetastatic effects on various types of cancers both in vitro and in vivo for example Piperine, Evodiamine, Matrine, Berberine and Tetrandine.Safety of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem