Malcor, Jean-Daniel et al. published their research in Journal of Medicinal Chemistry in 2012 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Formula: C21H21NO4

Chemical Optimization of New Ligands of the Low-Density Lipoprotein Receptor as Potential Vectors for Central Nervous System Targeting was written by Malcor, Jean-Daniel;Payrot, Nadine;David, Marion;Faucon, Aude;Abouzid, Karima;Jacquot, Guillaume;Floquet, Nicolas;Debarbieux, Franck;Rougon, Genevieve;Martinez, Jean;Khrestchatisky, Michel;Vlieghe, Patrick;Lisowski, Vincent. And the article was included in Journal of Medicinal Chemistry in 2012.Formula: C21H21NO4 The following contents are mentioned in the article:

Drug delivery to the central nervous system is hindered by the presence of physiol. barriers such as the blood-brain barrier. To accomplish the task of nutrient transport, the brain endothelium is endowed with various transport systems, including receptor-mediated transcytosis (RMT). This system can be used to shuttle therapeutics into the central nervous system (CNS) in a noninvasive manner. Therefore, the low-d. lipoprotein receptor (LDLR) is a relevant target for delivering drugs. From an initial phage display biopanning, a series of peptide ligands for the LDLR was optimized leading to size reduction and improved receptor binding affinity with the identification of peptide 22 and its analogs. Further real-time biphoton microscopy experiments on living mice demonstrated the ability of peptide 22 to efficiently and quickly cross CNS physiol. barriers. This validation of peptide 22 led the authors to explore its binding on the extracellular LDLR domain from an NMR-oriented structural study and docking experiments This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Formula: C21H21NO4).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Formula: C21H21NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Malcor, Jean-Daniel et al. published their research in Journal of Medicinal Chemistry in 2012 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Chemical Optimization of New Ligands of the Low-Density Lipoprotein Receptor as Potential Vectors for Central Nervous System Targeting was written by Malcor, Jean-Daniel;Payrot, Nadine;David, Marion;Faucon, Aude;Abouzid, Karima;Jacquot, Guillaume;Floquet, Nicolas;Debarbieux, Franck;Rougon, Genevieve;Martinez, Jean;Khrestchatisky, Michel;Vlieghe, Patrick;Lisowski, Vincent. And the article was included in Journal of Medicinal Chemistry in 2012.Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid The following contents are mentioned in the article:

Drug delivery to the central nervous system is hindered by the presence of physiol. barriers such as the blood-brain barrier. To accomplish the task of nutrient transport, the brain endothelium is endowed with various transport systems, including receptor-mediated transcytosis (RMT). This system can be used to shuttle therapeutics into the central nervous system (CNS) in a noninvasive manner. Therefore, the low-d. lipoprotein receptor (LDLR) is a relevant target for delivering drugs. From an initial phage display biopanning, a series of peptide ligands for the LDLR was optimized leading to size reduction and improved receptor binding affinity with the identification of peptide 22 and its analogs. Further real-time biphoton microscopy experiments on living mice demonstrated the ability of peptide 22 to efficiently and quickly cross CNS physiol. barriers. This validation of peptide 22 led the authors to explore its binding on the extracellular LDLR domain from an NMR-oriented structural study and docking experiments This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Application In Synthesis of (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Bieberich, Andrew A. et al. published their research in Scientific Reports in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Reference of 83799-24-0

Optimization of the 4-anilinoquin(az)oline scaffold as epidermal growth factor receptor (EGFR) inhibitors for chordoma utilizing a toxicology profiling assay platform was written by Bieberich, Andrew A.;Laitinen, Tuomo;Maffuid, Kaitlyn;Fatig, Raymond O. III;Torrice, Chad D.;Morris, David C.;Crona, Daniel J.;Asquith, Christopher R. M.. And the article was included in Scientific Reports in 2022.Reference of 83799-24-0 The following contents are mentioned in the article:

The 4-anilinoquin(az)oline is a well-known kinase inhibitor scaffold incorporated in clin. inhibitors including gefitinib, erlotinib, afatinib, and lapatinib, all of which have previously demonstrated activity against chordoma cell lines in vitro. We screened a focused array of compounds based on the 4-anilinoquin(az)oline scaffold against both U-CH1 and the epidermal growth factor receptor (EGFR) inhibitor resistant U-CH2. To prioritize the hit compounds for further development, we screened the compound set in a multiparameter cell health toxicity assay. The de-risked compounds were then screened against a wider panel of patient derived cell lines and demonstrated low micromolar efficacy in cells. We also investigated the properties that gave rise to the toxophore markers, including the structural and electronic features, while optimizing for EGFR in-cell target engagement. These de-risked leads present a potential new therapeutic avenue for treatment of chordomas and new chem. tools and probe compound 45 (UNC-CA359) to interrogate EGFR mediated disease phenotypes. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Reference of 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol.Reference of 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Morita, Tokio et al. published their research in Journal of Agricultural and Food Chemistry in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising 伪-glucosidase inhibitors. The former are analogs of DNJ with an improved 伪-glucosidase inhibitory profile than that of DNJ. Boisson et al.Recommanded Product: 83799-24-0

Inhibitory Effects of Cranberry Juice and Its Components on Intestinal OATP1A2 and OATP2B1: Identification of Avicularin as a Novel Inhibitor was written by Morita, Tokio;Akiyoshi, Takeshi;Tsuchitani, Toshiaki;Kataoka, Hiroki;Araki, Naoya;Yajima, Kodai;Katayama, Kazuhiro;Imaoka, Ayuko;Ohtani, Hisakazu. And the article was included in Journal of Agricultural and Food Chemistry in 2022.Recommanded Product: 83799-24-0 The following contents are mentioned in the article:

Organic anion-transporting polypeptide (OATP) 1A2 and OATP2B1 mediate the intestinal absorption of drugs. This study aimed to identify fruit juices or fruit juice components that inhibit OATPs and assess the risk of associated food-drug interactions. Inhibitory potency was assessed by examining the uptake of [3H]estrone 3-sulfate and [3H]fexofenadine into HEK293 cells expressing OATP1A2 or OATP2B1. In vivo experiments were conducted using mice to evaluate the effects of cranberry juice on the pharmacokinetics of orally administered fexofenadine. Of eight examined fruit juices, cranberry juice inhibited the functions of both OATPs most potently. Avicularin, a component of cranberry juice, was identified as a novel OATP inhibitor. It exhibited IC50 values of 9.0 and 37渭M for the inhibition of estrone 3-sulfate uptake mediated by OATP1A2 and OATP2B1, resp. A pharmacokinetic experiment revealed that fexofenadine exposure was significantly reduced (by 50%) by cranberry juice. Cranberry juice may cause drug interactions with OATP substrates. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Recommanded Product: 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. The piperidine and polyhydroxylated indolizidine derivatives have shown to be promising 伪-glucosidase inhibitors. The former are analogs of DNJ with an improved 伪-glucosidase inhibitory profile than that of DNJ. Boisson et al.Recommanded Product: 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Deng, Jianjun et al. published their research in Proceedings of the National Academy of Sciences of the United States of America in 2021 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine derivatives bearing a masked aldehyde function in the 蔚-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Synthetic Route of C16H20F3N3O3

Eicosanoid regulation of debris-stimulated metastasis was written by Deng, Jianjun;Yang, Haixia;Haak, Victoria M.;Yang, Jun;Kipper, Franciele C.;Barksdale, Chantal;Hwang, Sung Hee;Gartung, Allison;Bielenberg, Diane R.;Subbian, Selvakumar;Ho, Koc-Kan;Ye, Xiang;Fan, Daidi;Sun, Yongkui;Hammock, Bruce D.;Panigrahy, Dipak. And the article was included in Proceedings of the National Academy of Sciences of the United States of America in 2021.Synthetic Route of C16H20F3N3O3 The following contents are mentioned in the article:

Cancer therapy reduces tumor burden via tumor cell death (debris), which can accelerate tumor progression via the failure of inflammation resolution Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacol. abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Synthetic Route of C16H20F3N3O3).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine derivatives bearing a masked aldehyde function in the 蔚-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.Synthetic Route of C16H20F3N3O3

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wu, Patrick et al. published their research in Nature Communications in 2022 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Application of 83799-24-0

Integrating gene expression and clinical data to identify drug repurposing candidates for hyperlipidemia and hypertension was written by Wu, Patrick;Feng, QiPing;Kerchberger, Vern Eric;Nelson, Scott D.;Chen, Qingxia;Li, Bingshan;Edwards, Todd L.;Cox, Nancy J.;Phillips, Elizabeth J.;Stein, C. Michael;Roden, Dan M.;Denny, Joshua C.;Wei, Wei-Qi. And the article was included in Nature Communications in 2022.Application of 83799-24-0 The following contents are mentioned in the article:

Discovering novel uses for existing drugs, through drug repurposing, can reduce the time, costs, and risk of failure associated with new drug development. However, prioritizing drug repurposing candidates for downstream studies remains challenging. Here, we present a high-throughput approach to identify and validate drug repurposing candidates. This approach integrates human gene expression, drug perturbation, and clin. data from publicly available resources. We apply this approach to find drug repurposing candidates for two diseases, hyperlipidemia and hypertension. We screen >21,000 compounds and replicate ten approved drugs. We also identify 25 (seven for hyperlipidemia, eighteen for hypertension) drugs approved for other indications with therapeutic effects on clin. relevant biomarkers. For five of these drugs, the therapeutic effects are replicated in the All of Us Research Program database. We anticipate our approach will enable researchers to integrate multiple publicly available datasets to identify high priority drug repurposing opportunities for human diseases. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0Application of 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. The piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Application of 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Yehya, Alaa et al. published their research in Pharmacogenomics Journal in 2021 | CAS: 83799-24-0

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives bearing a masked aldehyde function in the 蔚-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.SDS of cas: 83799-24-0

A Decade of Pharmacogenetic Studies in Jordan: A Systemic Review was written by Yehya, Alaa;Altaany, Zaid. And the article was included in Pharmacogenomics Journal in 2021.SDS of cas: 83799-24-0 The following contents are mentioned in the article:

The aim of this study was to perform a systematic overview of the pharmacogenetic studies conducted in Jordan. A structured search of Medline was conducted for articles over the last decade (Jan. 2010-July 2020). Studies were classified by design, sample size, drug-gene combination, and the significance of the results. Thirty-two studies met the criteria for review. Most pharmacogenomic studies had a case-only design (n = 23). Only five studies included >500 participants. The total number of genetic variants in all studies was one hundred fifteen, which were found in forty genes, including dynamic (n = 27), and kinetic (n = 9) genes. The most commonly studied drugs were within the hematol. and cardiol. therapeutic areas and included statins, warfarin, aspirin, and clopidogrel. Most studies (n = 18) reported results with mixed p values [<0.05 and >0.05]. Pharmacogenomic research in Jordan is still in its infancy and is limited mainly to replication attempts. The need for standardization is imperative, especially in developing countries with scarce funding resources. This study involved multiple reactions and reactants, such as 2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0SDS of cas: 83799-24-0).

2-(4-(1-Hydroxy-4-(4-(hydroxydiphenylmethyl)piperidin-1-yl)butyl)phenyl)-2-methylpropanoic acid (cas: 83799-24-0) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives bearing a masked aldehyde function in the 蔚-position are easily transformed into quinolizidine compounds through intramolecular reductive amination.SDS of cas: 83799-24-0

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Oost, Thorsten K. et al. published their research in Journal of Medicinal Chemistry in 2004 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Reference of 86069-86-5

Discovery of Potent Antagonists of the Antiapoptotic Protein XIAP for the Treatment of Cancer was written by Oost, Thorsten K.;Sun, Chaohong;Armstrong, Robert C.;Al-Assaad, Ali-Samer;Betz, Stephen F.;Deckwerth, Thomas L.;Ding, Hong;Elmore, Steven W.;Meadows, Robert P.;Olejniczak, Edward T.;Oleksijew, Andrew;Oltersdorf, Tilman;Rosenberg, Saul H.;Shoemaker, Alexander R.;Tomaselli, Kevin J.;Zou, Hua;Fesik, Stephen W.. And the article was included in Journal of Medicinal Chemistry in 2004.Reference of 86069-86-5 The following contents are mentioned in the article:

Inhibitor of apoptosis (IAP) proteins are overexpressed in many cancers and have been implicated in tumor growth, pathogenesis, and resistance to chemo- or radiotherapy. On the basis of the NMR structure of a SMAC peptide complexed with the BIR3 domain of X-linked IAP (XIAP), a novel series of XIAP antagonists was discovered. The most potent compounds in this series bind to the baculovirus IAP repeat 3 (BIR3) domain of XIAP with single-digit nanomolar affinity and promote cell death in several human cancer cell lines. In a MDA-MB-231 breast cancer mouse xenograft model, these XIAP antagonists inhibited the growth of tumors. Close structural analogs that showed only weak binding to the XIAP-BIR3 domain were inactive in the cellular assays and showed only marginal in vivo activity. Our results are consistent with a mechanism in which ligands for the BIR3 domain of XIAP induce apoptosis by freeing up caspases. The present study validates the BIR3 domain of XIAP as a target and supports the use of small mol. XIAP antagonists as a potential therapy for cancers that overexpress XIAP. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Reference of 86069-86-5).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. Piperidine has a role as a reagent, a protic solvent, a base, a catalyst, a plant metabolite, a human metabolite and a non-polar solvent. Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.Reference of 86069-86-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Oost, Thorsten K. et al. published their research in Journal of Medicinal Chemistry in 2004 | CAS: 86069-86-5

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Recommanded Product: 86069-86-5

Discovery of Potent Antagonists of the Antiapoptotic Protein XIAP for the Treatment of Cancer was written by Oost, Thorsten K.;Sun, Chaohong;Armstrong, Robert C.;Al-Assaad, Ali-Samer;Betz, Stephen F.;Deckwerth, Thomas L.;Ding, Hong;Elmore, Steven W.;Meadows, Robert P.;Olejniczak, Edward T.;Oleksijew, Andrew;Oltersdorf, Tilman;Rosenberg, Saul H.;Shoemaker, Alexander R.;Tomaselli, Kevin J.;Zou, Hua;Fesik, Stephen W.. And the article was included in Journal of Medicinal Chemistry in 2004.Recommanded Product: 86069-86-5 The following contents are mentioned in the article:

Inhibitor of apoptosis (IAP) proteins are overexpressed in many cancers and have been implicated in tumor growth, pathogenesis, and resistance to chemo- or radiotherapy. On the basis of the NMR structure of a SMAC peptide complexed with the BIR3 domain of X-linked IAP (XIAP), a novel series of XIAP antagonists was discovered. The most potent compounds in this series bind to the baculovirus IAP repeat 3 (BIR3) domain of XIAP with single-digit nanomolar affinity and promote cell death in several human cancer cell lines. In a MDA-MB-231 breast cancer mouse xenograft model, these XIAP antagonists inhibited the growth of tumors. Close structural analogs that showed only weak binding to the XIAP-BIR3 domain were inactive in the cellular assays and showed only marginal in vivo activity. Our results are consistent with a mechanism in which ligands for the BIR3 domain of XIAP induce apoptosis by freeing up caspases. The present study validates the BIR3 domain of XIAP as a target and supports the use of small mol. XIAP antagonists as a potential therapy for cancers that overexpress XIAP. This study involved multiple reactions and reactants, such as (S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5Recommanded Product: 86069-86-5).

(S)-1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidine-2-carboxylic acid (cas: 86069-86-5) belongs to piperidine derivatives. The piperidine moiety constitutes an important building block for the synthesis of a variety of bioactive natural products, alkaloids and other drugs. Fluorinated piperidines are also the subject of continued interest in medicinal chemistry, for example in the synthesis of selective dipeptidyl peptidase II (DPP II) inhibitors. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions.Recommanded Product: 86069-86-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Napimoga, M. H. et al. published their research in Journal of Periodontal Research in 2018 | CAS: 1222780-33-7

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N鈥揌 bond in an axial position, and the other in an equatorial position.Category: piperidines

Soluble epoxide hydrolase inhibitor promotes immunomodulation to inhibit bone resorption was written by Napimoga, M. H.;Rocha, E. P.;Trindade-da-Silva, C. A.;Demasi, A. P. D.;Martinez, E. F.;Macedo, C. G.;Abdalla, H. B.;Bettaieb, A.;Haj, F. G.;Clemente-Napimoga, J. T.;Inceoglu, B.;Hammock, B. D.. And the article was included in Journal of Periodontal Research in 2018.Category: piperidines The following contents are mentioned in the article:

In the current study we used the sEH inhibitor (1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea [TPPU]) to investigate the immunomodulatory effects in a mouse periodontitis model. Mice were infected on days 0, 2, and 4 with Aggregatibacter actinomycetemcomitans and divided into groups (n = 6) that were treated orally, daily for 15 days, with 1 mg/kg of TPPU. Then, the mice were killed and their jaws were analyzed for bone resorption using morphometry. Immunoinflammatory markers in the gingival tissue were analyzed by microarray PCR or western blotting. Infected mice treated with TPPU showed lower bone resorption than infected mice without treatment. Interestingly, infected mice showed increased expression of sEH; however, mice treated with TPPU had a reduction in expression of sEH. Besides, several proinflammatory cytokines and mol. markers were downregulated in the gingival tissue in the group treated with 1 mg/kg of TPPU. The sEH inhibitor, TPPU, showed immunomodulatory effects, decreasing bone resorption and inflammatory responses in a bone resorption mouse model. This study involved multiple reactions and reactants, such as 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7Category: piperidines).

1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (cas: 1222780-33-7) belongs to piperidine derivatives. Piperidine is a saturated organic heteromonocyclic parent, an azacycloalkane, a secondary amine and a member of piperidines. Piperidine prefers a chair conformation, similar to cyclohexane. Unlike cyclohexane, piperidine has two distinguishable chair conformations: one with the N鈥揌 bond in an axial position, and the other in an equatorial position.Category: piperidines

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem