Babu, J. Sree Ram’s team published research in Journal of Chemical and Pharmaceutical Research in 2016 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Recommanded Product: 2-(Piperidin-4-yl)ethanol

In 2016,Babu, J. Sree Ram; Sankar, T. Ravi; Babu, K. Sudhakar; Latha, J. published 《Synthesis, characterization and biological evaluation of some novel disubstituted heterocyclic derivatives》.Journal of Chemical and Pharmaceutical Research published the findings.Recommanded Product: 2-(Piperidin-4-yl)ethanol The information in the text is summarized as follows:

Synthesis of some novel di-substituted 1-piperidin-4-yl(3,4-dibromphenyl)-1,3-dihydro-2H-benzimidazol-2-one derivatives (6A-6D) were prepared from com. available 1,2-henylenediamine. Compounds (6A-6D) were tested for Gram pos.: Streptococcus pyogenes and Staphylococcus aureus. Gram neg.: Escherichia coli, Pseudomonas arzenous, Proteus vulgaris, Salmonella typhi bacterial cultures. Compounds 6A-6D were found to be highly active against Streptococcus pyogenes and Escherichia coli. In the experiment, the researchers used many compounds, for example, 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Recommanded Product: 2-(Piperidin-4-yl)ethanol)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) can be used to synthese ursolic acid derivatives, spiroimidazolidinone NPC1L1 inhibitors, neurokinin-2 receptor antagonists, antagonists for inhibition of platelet aggregation.Recommanded Product: 2-(Piperidin-4-yl)ethanol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhu, Ze-Fan’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2019 | CAS: 87120-72-7

tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7) belongs to anime. Halogenation, in which one or more hydrogen atoms of an amine is replaced by a halogen atom, occurs with chlorine, bromine, and iodine, as well as with some other reagents, notably hypochlorous acid (HClO). With primary amines the reaction proceeds in two stages, producing N-chloro- and N,N-dichloro-amines, RNHCl and RNCl2, respectively. With tertiary amines, an alkyl group may be displaced by a halogen.Recommanded Product: tert-Butyl 4-aminopiperidine-1-carboxylate

In 2019,Chemical Communications (Cambridge, United Kingdom) included an article by Zhu, Ze-Fan; Tu, Jia-Lin; Liu, Feng. Recommanded Product: tert-Butyl 4-aminopiperidine-1-carboxylate. The article was titled 《Ni-Catalyzed deaminative hydroalkylation of internal alkynes》. The information in the text is summarized as follows:

A regioselective cis-hydroalkylation of internal alkynes with readily prepared Katritzky pyridinium salts for the synthesis of tri-substituted alkenes is described. This reaction is the first example of a metal-catalyzed hydroalkylation of an alkyne via C-N bond activation of an amine. The reaction demonstrates broad scope and functional group tolerance, allowing access to desired products with high diversity. Preliminary mechanistic studies indicate that a combination of an SET-initiated radical process and Ni-catalyzed alkylation could engage in the reaction, which makes it possible to bypass the traditional open-shell addition pathway.tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7Recommanded Product: tert-Butyl 4-aminopiperidine-1-carboxylate) was used in this study.

tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7) belongs to anime. Halogenation, in which one or more hydrogen atoms of an amine is replaced by a halogen atom, occurs with chlorine, bromine, and iodine, as well as with some other reagents, notably hypochlorous acid (HClO). With primary amines the reaction proceeds in two stages, producing N-chloro- and N,N-dichloro-amines, RNHCl and RNCl2, respectively. With tertiary amines, an alkyl group may be displaced by a halogen.Recommanded Product: tert-Butyl 4-aminopiperidine-1-carboxylate

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Tolentino, Kirsten T.’s team published research in Bioorganic & Medicinal Chemistry Letters in 2022 | CAS: 109384-19-2

tert-Butyl 4-hydroxypiperidine-1-carboxylate(cas:109384-19-2) is a 4-hydroxypyridine with a boc protecting group used in the preparation of neurologically active agents and other pharmaceutical compounds.Application of 109384-19-2

In 2022,Tolentino, Kirsten T.; Mashinson, Viktoriya; Vadukoot, Anish K.; Hopkins, Corey R. published an article in Bioorganic & Medicinal Chemistry Letters. The title of the article was 《Discovery and characterization of benzyloxy piperidine based dopamine 4 receptor antagonists》.Application of 109384-19-2 The author mentioned the following in the article:

The dopamine receptor 4 (D4R) is highly expressed in both motor, associative and limbic subdivisions of the cortico-basal ganglia network. Due to the distribution in the brain, there is mounting evidence pointing to a role for the D4R in the modulation of this network and its subsequent involvement in L-DOPA induced dyskinesias in Parkinson′s disease. As part of our continued effort in the discovery of novel D4R antagonists, we report the discovery and characterization of a new 3- or 4-benzyloxypiperidine scaffold as D4R antagonists. We report several D4R selective compounds (>30-fold vs. other dopamine receptor subtypes) with improved in vitro and in vivo stability over previously reported D4R antagonists.tert-Butyl 4-hydroxypiperidine-1-carboxylate(cas: 109384-19-2Application of 109384-19-2) was used in this study.

tert-Butyl 4-hydroxypiperidine-1-carboxylate(cas:109384-19-2) is a 4-hydroxypyridine with a boc protecting group used in the preparation of neurologically active agents and other pharmaceutical compounds.Application of 109384-19-2

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Soumyanarayanan, Uttara’s team published research in European Journal of Medicinal Chemistry in 2019 | CAS: 87120-72-7

tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7) belongs to anime. In organic chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia (NH3), wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group (these may respectively be called alkylamines and arylamines; amines in which both types of substituent are attached to one nitrogen atom may be called alkylarylamines).Recommanded Product: tert-Butyl 4-aminopiperidine-1-carboxylate

Recommanded Product: tert-Butyl 4-aminopiperidine-1-carboxylateIn 2019 ,《Discovery of a potent histone deacetylase (HDAC) 3/6 selective dual inhibitor》 appeared in European Journal of Medicinal Chemistry. The author of the article were Soumyanarayanan, Uttara; Ramanujulu, Pondy Murugappan; Mustafa, Nurulhuda; Haider, Shozeb; Fang Nee, Adina Huey; Tong, Jie Xin; Tan, Kevin S. W.; Chng, Wee Joo; Dymock, Brian W.. The article conveys some information:

Herein, we report the discovery of a dual histone deacetylase inhibitor displaying a unique HDAC3/6 selectivity profile. An initial strategy to merge two epigenetic pharmacophores resulted in the discovery of potent HDAC6 inhibitors with selectivity over HDAC1. Screening in an HDAC panel revealed addnl. low nanomolar inhibition only against HDAC3. Low micromolar antiproliferative activities against two breast cancer and four hematol. cancer cell lines was supported by pharmacodynamic studies on a preferred mol., 24c, substantiating the HDAC inhibitory profile in cells. Apoptosis was identified as one of the main cell death pathways. Modeling studies of 24c against HDAC1,2,3 and 6 further provided insights on the orientation of specific residues relevant to compound potency, explaining the observed HDAC3/6 selectivity. A subset of the compounds also exhibited good antimalarial activities, particularly against the chloroquine-resistant strain K1 of P.falciparum. In vitro studies revealed a favorable DMPK profile warranting further investigation of the therapeutic potential of these compounds The results came from multiple reactions, including the reaction of tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7Recommanded Product: tert-Butyl 4-aminopiperidine-1-carboxylate)

tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7) belongs to anime. In organic chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia (NH3), wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group (these may respectively be called alkylamines and arylamines; amines in which both types of substituent are attached to one nitrogen atom may be called alkylarylamines).Recommanded Product: tert-Butyl 4-aminopiperidine-1-carboxylate

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Gao, Panpan’s team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2019 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Recommanded Product: 826-36-8

Recommanded Product: 826-36-8On March 1, 2019, Gao, Panpan; Tian, Xike; Nie, Yulun; Yang, Chao; Zhou, Zhaoxin; Wang, Yanxin published an article in Chemical Engineering Journal (Amsterdam, Netherlands). The article was 《Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration》. The article mentions the following:

Recently, perovskite is becoming a promising alternative as peroxymonosulfate (PMS) activator for the remediation of organic pollutants in water. But the factor determining PMS activation efficiency of perovskite and the evolution of reactive oxygen species (ROS) remain equivocal and elusive. In this study, we proposed an oxygen defect dependent PMS activation mechanism over perovskite with the singlet oxygen (1O2) as the dominant ROS. Among the tested four perovskites, ofloxacin (OFX) degradation efficiency increased with the following order: LaFeO3 < LaZnO3 < LaMnO3 < LaNiO3, which agreed well with their oxygen defect amounts based on XPS and ESR (EPR) anal. The results clearly demonstrated a good relationship among oxygen defects in LaBO3, OFX degradation efficiency and 1O2 concentration Moreover, 1O2 evolution mechanism over perovskite by decreasing the activation energy of PMS self-decomposition was proposed. The 1O2 mediated OFX degradation pathway was further studied by HPLC-MS technique and three-dimensional excitation-emission matrix fluorescence spectroscopy (3D EEMs). This work provides a new insight into PMS activation by perovskites and favors its application in actual water treatment. In the experiment, the researchers used many compounds, for example, Triacetonamine(cas: 826-36-8Recommanded Product: 826-36-8)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine-containing compounds are also frequently employed in synthesis as ligands or auxiliaries. Accordingly, many efforts have been devoted to the development of novel methods for the synthesis of these compounds over the years.Recommanded Product: 826-36-8

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Tikhomirov, Alexander S.’s team published research in European Journal of Medicinal Chemistry in 2020 | CAS: 87120-72-7

tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7) belongs to anime. In organic chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia (NH3), wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group (these may respectively be called alkylamines and arylamines; amines in which both types of substituent are attached to one nitrogen atom may be called alkylarylamines).Quality Control of tert-Butyl 4-aminopiperidine-1-carboxylate

《Amides of pyrrole- and thiophene-fused anthraquinone derivatives: a role of the heterocyclic core in antitumor properties》 was written by Tikhomirov, Alexander S.; Litvinova, Valeria A.; Andreeva, Daria V.; Tsvetkov, Vladimir B.; Dezhenkova, Lyubov G.; Volodina, Yulia L.; Kaluzhny, Dmitry N.; Treshalin, Ivan D.; Schols, Dominique; Ramonova, Alla A.; Moisenovich, Mikhail M.; Shtil, Alexander A.; Shchekotikhin, Andrey E.. Quality Control of tert-Butyl 4-aminopiperidine-1-carboxylate And the article was included in European Journal of Medicinal Chemistry in 2020. The article conveys some information:

A new series of naphtho[2,3-f]indole-3-carboxamides I [R1 = Me; R2 = (3S)-3-aminopyrrolidin-1-yl, ((3S)-pyrrolidin-3-yl)amino, 4-amino-1-piperidyl, etc.; X = NH, NMe, NBn, etc.;] and anthra[2,3-b]thiophene-3-carboxamides I [R1 = H, X = S] was synthesized via coupling the resp. acids with cyclic diamines and dissected the role of the heterocyclic core in antitumor properties. New compounds demonstrated a submicromolar antiproliferative potency close to doxorubicin (Dox) against five tumor cell lines of various tissue origin. In contrast to Dox, the new compounds were similarly cytotoxic for HCT116 colon carcinoma cells (wild type p53) and their isogenic p53 knockout counterparts. Compound I [R1 = Me; R2 = (3S)-3-aminopyrrolidin-1-yl; X = NH] formed more affine complexes with DNA duplex than furan and thiophene analogs, a property that could be translated into a stronger inhibition of topoisomerase 1 mediated DNA unwinding. At tolerable doses the water soluble derivative I [R1 = Me; R2 = (3S)-3-aminopyrrolidin-1-yl; X = NH] significantly inhibited tumor growth (up to 79%) and increased the lifespan (153%) of mice bearing P388 lymphoma transplants. In the experiment, the researchers used many compounds, for example, tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7Quality Control of tert-Butyl 4-aminopiperidine-1-carboxylate)

tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7) belongs to anime. In organic chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia (NH3), wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group (these may respectively be called alkylamines and arylamines; amines in which both types of substituent are attached to one nitrogen atom may be called alkylarylamines).Quality Control of tert-Butyl 4-aminopiperidine-1-carboxylate

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Duran-Mota, Jose Antonio’s team published research in ACS Biomaterials Science & Engineering in 2021 | CAS: 109384-19-2

tert-Butyl 4-hydroxypiperidine-1-carboxylate(cas:109384-19-2) is a 4-hydroxypyridine with a boc protecting group used in the preparation of neurologically active agents and other pharmaceutical compounds.Related Products of 109384-19-2

Related Products of 109384-19-2In 2021 ,《Polyplex-Loaded Hydrogels for Local Gene Delivery to Human Dermal Fibroblasts》 appeared in ACS Biomaterials Science & Engineering. The author of the article were Duran-Mota, Jose Antonio; Yani, Julia Quintanas; Almquist, Benjamin D.; Borros, Salvador; Oliva, Nuria. The article conveys some information:

Impaired cutaneous healing leading to chronic wounds affects between 2 and 6% of the total population in most developed countries and it places a substantial burden on healthcare budgets. Current treatments involving antibiotic dressings and mech. debridement are often not effective, causing severe pain, emotional distress, and social isolation in patients for years or even decades, ultimately resulting in limb amputation. Alternatively, gene therapy (such as mRNA therapies) has emerged as a viable option to promote wound healing through modulation of gene expression. However, protecting the genetic cargo from degradation and efficient transfection into primary cells remain significant challenges in the push to clin. translation. Another limiting aspect of current therapies is the lack of sustained release of drugs to match the therapeutic window. Herein, we have developed an injectable, biodegradable and cytocompatible hydrogel-based wound dressing that delivers poly(β-amino ester)s (pBAEs) nanoparticles in a sustained manner over a range of therapeutic windows. We also demonstrate that pBAE nanoparticles, successfully used in previous in vivo studies, protect the mRNA load and efficiently transfect human dermal fibroblasts upon sustained release from the hydrogel wound dressing. This prototype wound dressing technol. can enable the development of novel gene therapies for the treatment of chronic wounds. In the part of experimental materials, we found many familiar compounds, such as tert-Butyl 4-hydroxypiperidine-1-carboxylate(cas: 109384-19-2Related Products of 109384-19-2)

tert-Butyl 4-hydroxypiperidine-1-carboxylate(cas:109384-19-2) is a 4-hydroxypyridine with a boc protecting group used in the preparation of neurologically active agents and other pharmaceutical compounds.Related Products of 109384-19-2

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Sun, Xiaoqing’s team published research in Analytical Chemistry (Washington, DC, United States) in 2020 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Formula: C9H17NO

Formula: C9H17NOOn September 1, 2020 ,《Long-Lasting and Intense Chemiluminescence of Luminol Triggered by Oxidized g-C3N4 Nanosheets》 was published in Analytical Chemistry (Washington, DC, United States). The article was written by Sun, Xiaoqing; Lei, Jing; Jin, Yan; Li, Baoxin. The article contains the following contents:

Most of the known chemiluminescence (CL) systems are flash-type, whereas a CL system with long-lasting and strong emission is very favorable for accurate CL quant. anal. and imaging assays. In this work, we found that the oxidized g-C3N4 (g-CNOX) could trigger luminol-H2O2 to produce a long-lasting and intense CL emission. The CL emission lasted for over 10 min and could be observed by the naked eye in a dark room. By means of a CL spectrum, X-ray photoelectron spectra, and ESR spectra, the possible mechanism of this CL reaction was proposed. This strong and long-duration CL emission was attributed to the high catalytic activity of g-CNOX nanosheets and continuous generation of reactive oxygen species from H2O2 on g-CNOX surface. Taking full advantage of the long-lasting CL property of this system, we proposed one “”non-in-situ mixing”” mode of CL measurement. Compared with the traditional “”in-situ mixing”” CL measurement mode, this measurement mode was convenient to operate and had good reproducibility. This work not only provides a long-lasting CL reaction but also deepens the understanding of the structure and properties of g-C3N4 material. In the experiment, the researchers used Triacetonamine(cas: 826-36-8Formula: C9H17NO)

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Formula: C9H17NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Tan, Yixuan’s team published research in Journal of Photochemistry and Photobiology, B: Biology in 2022 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Recommanded Product: 826-36-8

Recommanded Product: 826-36-8On September 30, 2022 ,《Facile construction of fluorescent C70-COOH nanoparticles with advanced antibacterial and anti-biofilm photodynamic activity》 was published in Journal of Photochemistry and Photobiology, B: Biology. The article was written by Tan, Yixuan; Ma, Yihan; Fu, Sheng; Zhang, Aiqing. The article contains the following contents:

Photodynamic antibacterial therapy has been considered as one of the most promising treatments to alleviate the spread of multidrug resistant bacterial pathogens. Given the hypoxic environment of infectious tissues, photosensitizers with reduced oxygen-demand could exhibit superiority upon irradiation Herein reported is a novel C70-based photosensitizers synthesized by the facile one-step thiol-ene reaction. Various characterization techniques were employed to confirm the structural, photoluminescent properties, photostability and biocompatibility of the as-synthesized C70-COOH nanoparticles. Furthermore, they were capable of efficiently producing reactive oxygen species following both the type I and II mechanistic pathways, thus still generating adequate free radicals under hypoxic condition. Therefore, they could approach and destroy the bacterial cell membrane in the presence of visible light, thereby causing cytoplasmic leakage and eventually achieving broad-spectrum inactivation of four representative bacterial strains. Especially, methicillin-resistant Staphylococcus aureus (MRSA) were completely eliminated after merely 10 min irradiation, and the formation of its corresponding biofilm were also greatly inhibited by C70-COOH nanoparticles. These results provide new insights and opportunities for the development of hypoxia-tolerant fullerene-based photosensitizers to combat multidrug resistant bacterial and related infections. In addition to this study using Triacetonamine, there are many other studies that have used Triacetonamine(cas: 826-36-8Recommanded Product: 826-36-8) was used in this study.

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Recommanded Product: 826-36-8

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Dileep, K. V.’s team published research in International Journal of Biological Macromolecules in 2021 | CAS: 39546-32-2

Piperidine-4-carboxamide(cas: 39546-32-2) belongs to anime. Reaction with nitrous acid (HNO2), which functions as an acylating agent that is a source of the nitrosyl group (―NO), converts aliphatic primary amines to nitrogen and mixtures of alkenes and alcohols corresponding to the alkyl group in a complex process. This reaction has been used for analytical determination of primary amino groups in a procedure known as the Van Slyke method.Formula: C6H12N2O

Dileep, K. V.; Sakai, Naoki; Ihara, Kentaro; Kato-Murayama, Miyuki; Nakata, Akiko; Ito, Akihiro; Sivaraman, D. M.; Shin, Jay W.; Yoshida, Minoru; Shirouzu, Mikako; Zhang, Kam Y. J. published an article on February 15 ,2021. The article was titled 《Piperidine-4-carboxamide as a new scaffold for designing secretory glutaminyl cyclase inhibitors》, and you may find the article in International Journal of Biological Macromolecules.Formula: C6H12N2O The information in the text is summarized as follows:

Alzheimer’s disease (AD), a common chronic neurodegenerative disease, has become a major public health concern. Despite years of research, therapeutics for AD are limited. Overexpression of secretory glutaminyl cyclase (sQC) in AD brain leads to the formation of a highly neurotoxic pyroglutamate variant of amyloid beta, pGlu-Aβ, which acts as a potential seed for the aggregation of full length Aβ. Preventing the formation of pGlu-Aβ through inhibition of sQC has become an attractive disease-modifying therapy in AD. In this current study, through a pharmacophore assisted high throughput virtual screening, we report a novel sQC inhibitor (Cpd-41) with a piperidine-4-carboxamide moiety (IC50 = 34μM). Systematic mol. docking, MD simulations and X-ray crystallog. anal. provided atomistic details of the binding of Cpd-41 in the active site of sQC. The unique mode of binding and moderate toxicity of Cpd-41 make this mol. an attractive candidate for designing high affinity sQC inhibitors. In the part of experimental materials, we found many familiar compounds, such as Piperidine-4-carboxamide(cas: 39546-32-2Formula: C6H12N2O)

Piperidine-4-carboxamide(cas: 39546-32-2) belongs to anime. Reaction with nitrous acid (HNO2), which functions as an acylating agent that is a source of the nitrosyl group (―NO), converts aliphatic primary amines to nitrogen and mixtures of alkenes and alcohols corresponding to the alkyl group in a complex process. This reaction has been used for analytical determination of primary amino groups in a procedure known as the Van Slyke method.Formula: C6H12N2O

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem