Blackwell, J. Henry’s team published research in Journal of the American Chemical Society in 2021 | CAS: 87120-72-7

tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7) belongs to anime.Typically the presence of an amine functional group is deduced by a combination of techniques, including mass spectrometry as well as NMR and IR spectroscopies. 1H NMR signals for amines disappear upon treatment of the sample with D2O. In their infrared spectrum primary amines exhibit two N-H bands, whereas secondary amines exhibit only one.Product Details of 87120-72-7

Blackwell, J. Henry; Kumar, Roopender; Gaunt, Matthew J. published their research in Journal of the American Chemical Society in 2021. The article was titled 《Visible-Light-Mediated Carbonyl Alkylative Amination to All-Alkyl α-Tertiary Amino Acid Derivatives》.Product Details of 87120-72-7 The article contains the following contents:

The all-alkyl α-tertiary amino acid scaffold represents an important structural feature in many biol. and pharmaceutically relevant mols. Syntheses of this class of mol., however, often involve multiple steps and require activating auxiliary groups on the nitrogen atom or tailored building blocks. A straightforward, single-step, and modular methodol. for the synthesis of all-alkyl α-tertiary amino esters was reported. This new strategy uses visible light and a silane reductant to bring about a carbonyl alkylative amination reaction that combines a wide range of primary amines, α-ketoesters, and alkyl iodides to form functionally diverse all-alkyl α-tertiary amino esters. Bronsted acid-mediated in situ condensation of primary amine and α-ketoester delivers the corresponding ketiminium species, which undergoes rapid 1,2-addition of an alkyl radical (generated from an alkyl iodide by the action of visible light and silane reductant) to form an aminium radical cation. Upon a polarity-matched and irreversible hydrogen atom transfer from electron rich silane, the electrophilic aminium radical cation is converted to an all-alkyl α-tertiary amino ester product. The benign nature of this process allows for broad scope in all three components and generates structurally and functionally diverse suite of α-tertiary amino esters that will likely have widespread use in academic and industrial settings. In the part of experimental materials, we found many familiar compounds, such as tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7Product Details of 87120-72-7)

tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7) belongs to anime.Typically the presence of an amine functional group is deduced by a combination of techniques, including mass spectrometry as well as NMR and IR spectroscopies. 1H NMR signals for amines disappear upon treatment of the sample with D2O. In their infrared spectrum primary amines exhibit two N-H bands, whereas secondary amines exhibit only one.Product Details of 87120-72-7

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Kostrzewa, Tomasz’s team published research in International Journal of Molecular Sciences in 2021 | CAS: 1445-73-4

1-Methyl-4-piperidone(cas: 1445-73-4) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Electric Literature of C6H11NO

Kostrzewa, Tomasz; Wolosewicz, Karol; Jamrozik, Marek; Drzezdzon, Joanna; Sieminska, Julia; Jacewicz, Dagmara; Gorska-Ponikowska, Magdalena; Kolaczkowski, Marcin; Lazny, Ryszard; Kuban-Jankowska, Alicja published their research in International Journal of Molecular Sciences in 2021. The article was titled 《Curcumin and Its New Derivatives: Correlation between Cytotoxicity against Breast Cancer Cell Lines, Degradation of PTP1B Phosphatase and ROS Generation》.Electric Literature of C6H11NO The article contains the following contents:

Breast cancer is the most common cancer of women-it affects more than 2 million women worldwide. PTP1B phosphatase can be one of the possible targets for new drugs in breast cancer therapy. In this paper, we present new curcumin derivatives featuring a 4-piperidone ring as PTP1B inhibitors and ROS inducers. We performed cytotoxicity anal. for twelve curcumin derivatives against breast cancer MCF-7 and MDA-MB-231 cell lines and the human keratinocyte HaCaT cell line. Furthermore, because curcumin is a known antioxidant, we assessed antioxidant effects in its derivatives For the most potent cytotoxic compounds, we determined intracellular ROS and PTP1B phosphatase levels. Moreover, for curcumin and its derivatives, we performed real-time microscopy to observe the photosensitizing effect. Finally, computational anal. was performed for the curcumin derivatives with an inhibitory effect against PTP1B phosphatase to assess the potential binding mode of new inhibitors within the allosteric site of the enzyme. We observed that two tested compounds are better anticancer agents than curcumin. Moreover, we suggest that blocking the -OH group in phenolic compounds causes an increase in the cytotoxicity effect, even at a low concentration Furthermore, due to this modification, a higher level of ROS is induced, which correlates with a lower level of PTP1B. The results came from multiple reactions, including the reaction of 1-Methyl-4-piperidone(cas: 1445-73-4Electric Literature of C6H11NO)

1-Methyl-4-piperidone(cas: 1445-73-4) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Electric Literature of C6H11NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Berger, Kathleen J.’s team published research in Journal of the American Chemical Society in 2021 | CAS: 87120-72-7

tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7) belongs to anime. Many important products require amines as part of their syntheses. Methylamine is utilized in the production of the analgesic meperidine (trade name Demerol) and the photographic developer Metol (trademark), and dimethylamine is used in the synthesis of the antihistamine diphenhydramine (trade name Benadryl), the solvent dimethylformamide (DMF), and the rocket propellant 1,1-dimethylhydrazine. The synthesis of the insect repellent N,N-diethyl-m-toluamide (DEET) incorporates diethylamine while that of the synthetic fibre Kevlar requires aromatic amines.Name: tert-Butyl 4-aminopiperidine-1-carboxylate

Berger, Kathleen J.; Driscoll, Julia L.; Yuan, Mingbin; Dherange, Balu D.; Gutierrez, Osvaldo; Levin, Mark D. published their research in Journal of the American Chemical Society in 2021. The article was titled 《Direct Deamination of Primary Amines via Isodiazene Intermediates》.Name: tert-Butyl 4-aminopiperidine-1-carboxylate The article contains the following contents:

A reaction that selectively deaminated primary amines and anilines under mild conditions and with remarkable functional group tolerance including a range of pharmaceutical compounds, amino acids, amino sugars, and natural products was reported. An anomeric amide reagent was uniquely capable of facilitating the reaction through the intermediacy of an unprecedented monosubstituted isodiazene intermediate. In addition to dramatically simplifying deamination compared to existing protocols, this approach enabled strategic applications of iminium and amine-directed chemistries as traceless methods. Mechanistic and computational studies supported the intermedicacy of a primary isodiazene which exhibited an unexpected divergence from previously studied secondary isodiazenes, leading to cage-escaping, free radical species that engage in a chain, hydrogen-atom transfer process involving aliphatic and diazenyl radical intermediates. In the experimental materials used by the author, we found tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7Name: tert-Butyl 4-aminopiperidine-1-carboxylate)

tert-Butyl 4-aminopiperidine-1-carboxylate(cas: 87120-72-7) belongs to anime. Many important products require amines as part of their syntheses. Methylamine is utilized in the production of the analgesic meperidine (trade name Demerol) and the photographic developer Metol (trademark), and dimethylamine is used in the synthesis of the antihistamine diphenhydramine (trade name Benadryl), the solvent dimethylformamide (DMF), and the rocket propellant 1,1-dimethylhydrazine. The synthesis of the insect repellent N,N-diethyl-m-toluamide (DEET) incorporates diethylamine while that of the synthetic fibre Kevlar requires aromatic amines.Name: tert-Butyl 4-aminopiperidine-1-carboxylate

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Nakagawa, Masanari’s team published research in Journal of the American Chemical Society in 2022 | CAS: 109384-19-2

tert-Butyl 4-hydroxypiperidine-1-carboxylate(cas:109384-19-2) is a 4-hydroxypyridine with a boc protecting group used in the preparation of neurologically active agents and other pharmaceutical compounds.Application of 109384-19-2

In 2022,Nakagawa, Masanari; Matsuki, Yuki; Nagao, Kazunori; Ohmiya, Hirohisa published an article in Journal of the American Chemical Society. The title of the article was 《A Triple Photoredox/Cobalt/Bronsted Acid Catalysis Enabling Markovnikov Hydroalkoxylation of Unactivated Alkenes》.Application of 109384-19-2 The author mentioned the following in the article:

Authors demonstrate Markovnikov hydroalkoxylation of unactivated alkenes using alcs. through a triple catalysis consisting of photoredox, cobalt, and Bronsted acid catalysts under visible light irradiation The triple catalysis realizes three key elementary steps in a single catalytic cycle: (1) Co(III) hydride generation by photochem. reduction of Co(II) followed by protonation, (2) metal hydride hydrogen atom transfer (MHAT) of alkenes by Co(III) hydride, and (3) oxidation of the alkyl Co(III) complex to alkyl Co(IV). The precise control of protons and electrons by the three catalysts allows the elimination of strong acids and external reductants/oxidants that are required in the conventional methods. After reading the article, we found that the author used tert-Butyl 4-hydroxypiperidine-1-carboxylate(cas: 109384-19-2Application of 109384-19-2)

tert-Butyl 4-hydroxypiperidine-1-carboxylate(cas:109384-19-2) is a 4-hydroxypyridine with a boc protecting group used in the preparation of neurologically active agents and other pharmaceutical compounds.Application of 109384-19-2

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Bradbury, Robert H.’s team published research in Bioorganic & Medicinal Chemistry Letters in 2013 | CAS: 50461-59-1

4-(Pyridin-3-yl)piperidin-4-ol(cas: 50461-59-1) belongs to piperidines. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions. Recommanded Product: 50461-59-1

《Discovery of AZD3514, a small-molecule androgen receptor downregulator for treatment of advanced prostate cancer》 was written by Bradbury, Robert H.; Acton, David G.; Broadbent, Nicola L.; Brooks, A. Nigel; Carr, Gregory R.; Hatter, Glenn; Hayter, Barry R.; Hill, Kathryn J.; Howe, Nicholas J.; Jones, Rhys D. O.; Jude, David; Lamont, Scott G.; Loddick, Sarah A.; McFarland, Heather L.; Parveen, Zaieda; Rabow, Alfred A.; Sharma-Singh, Gorkhn; Stratton, Natalie C.; Thomason, Andrew G.; Trueman, Dawn; Walker, Graeme E.; Wells, Stuart L.; Wilson, Joanne; Wood, J. Matthew. Recommanded Product: 50461-59-1 And the article was included in Bioorganic & Medicinal Chemistry Letters on April 1 ,2013. The article conveys some information:

Removal of the basic piperazine nitrogen atom, introduction of a solubilising end group and partial reduction of the triazolopyridazine moiety in the previously-described lead androgen receptor downregulator 6-[4-(4-cyanobenzyl)piperazin-1-yl]-3-(trifluoromethyl)[1,2,4]triazolo[4,3-b]pyridazine (1) addressed hERG and phys. property issues, and led to clin. candidate 6-(4-{4-[2-(4-acetylpiperazin-1-yl)ethoxy]phenyl}piperidin-1-yl)-3-(trifluoromethyl)-7,8-dihydro[1,2,4]triazolo[4,3-b]pyridazine (12), designated AZD3514, that is being evaluated in a Phase I clin. trial in patients with castrate-resistant prostate cancer. In the experimental materials used by the author, we found 4-(Pyridin-3-yl)piperidin-4-ol(cas: 50461-59-1Recommanded Product: 50461-59-1)

4-(Pyridin-3-yl)piperidin-4-ol(cas: 50461-59-1) belongs to piperidines. Piperidine derivatives are also used in solid-phase peptide synthesis (SPPS) and many degradation reactions. Recommanded Product: 50461-59-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Ge, Teng’s team published research in Journal of the Taiwan Institute of Chemical Engineers in 2021 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Reference of Triacetonamine

Ge, Teng; Jin, Xiaoli; Cao, Jian; Chen, Zhuohua; Xu, Yixue; Xie, Haiquan; Su, Fengyun; Li, Xin; Lan, Qing; Ye, Liqun published their research in Journal of the Taiwan Institute of Chemical Engineers on December 31 ,2021. The article was titled 《Giant enhanced photocatalytic H2O2 production over hollow hexagonal prisms carbon nitride》.Reference of Triacetonamine The article contains the following contents:

H2O2, as a green and environmentally friendly oxidant, has been widely used in our daily life and industrial production It is of epoch-making significance to develop highly efficient photocatalysts for producing H2O2. In recent years, g-C3N4 has received much attention due to its high chem. stability, environmental friendliness and suitable energy band structure. However, some shortcomings including the fast recombination of photogenerated electron-hole pairs and small sp. surface area in traditional 2D g-C3N4 seriously impede its photocatalytic performance for the production of H2O2.1D hollow nanostructures possess intriguing physicochem. properties and are adopted to overcome the intrinsic shortcomings of g-C3N4. Herein, g-C3N4 with a hollow hexagonal prism structure (CN-HP) is prepared to produce H2O2. It is characterized by XRD, XPS, SEM, HRTEM, ESR and DRS. BET, PL spectra, photocurrent and EIS are used to explain the enhanced photocatalytic performance. Compared with traditional 2D g-C3N4, the sp. surface area of CN-HP increases to 41.513 m2/g, providing more active sites. Meanwhile, its hollow tubular structure can enhance the migration of photogenerated electrons to the catalyst surface, and electrons with a longer lifetime can participate in photocatalytic reactions to achieve high efficiency. The yield of H2O2 production can up to 4.08 μmol over CN-HP in 40 min, which is about 7 times higher than that of traditional 2D g-C3N4, and the apparent quantum efficiency (AQE) of H2O2 production at 420 nm is 2.41%. This research provides a valuable reference for the development of green materials for efficient photocatalytic production of H2O2. In addition to this study using Triacetonamine, there are many other studies that have used Triacetonamine(cas: 826-36-8Reference of Triacetonamine) was used in this study.

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is a key saturated heterocyclic scaffold found in several of the top-selling small molecule pharmaceuticals and natural alkaloids, with a diverse range of biological activities. Hence, continuous efforts have been made to develop convenient methods to prepare piperidine derivatives.Reference of Triacetonamine

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Sternfeld, Francine’s team published research in Bioorganic & Medicinal Chemistry Letters in 1996 | CAS: 95533-25-8

Methyl 2-(1-methylpiperidin-4-yl)acetate(cas: 95533-25-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Reference of Methyl 2-(1-methylpiperidin-4-yl)acetate

Sternfeld, Francine; Baker, Raymond; Broughton, Howard B.; Guiblin, Alexander R.; Jelley, Richard A.; Matassa, Victor G.; Reeve, Austin J.; Beer, Margaret; Stanton, Josephine a. published their research in Bioorganic & Medicinal Chemistry Letters on August 6 ,1996. The article was titled 《The chemical evolution of N,N-dimethyl-2-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]ethylamine (L-741,604) and analogs: potent and selective agonists for 5-HT1D receptors》.Reference of Methyl 2-(1-methylpiperidin-4-yl)acetate The article contains the following contents:

Optimization of a series of 5-(heterocyclyl)tryptamines led to the identification of the sym. substituted, N-4 linked 1,2,4-triazole as the best indole C-5 substituent for 5-HT1D receptor affinity and selectivity. The triazole I is the most potent and selective, orally bioavailable, 5-HT1D receptor agonist identified to date, showing an order of magnitude greater potency than the clin. compound sumatriptan with improved subtype selectivity. The experimental part of the paper was very detailed, including the reaction process of Methyl 2-(1-methylpiperidin-4-yl)acetate(cas: 95533-25-8Reference of Methyl 2-(1-methylpiperidin-4-yl)acetate)

Methyl 2-(1-methylpiperidin-4-yl)acetate(cas: 95533-25-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Reference of Methyl 2-(1-methylpiperidin-4-yl)acetate

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Mo, Jun’s team published research in Journal of Enzyme Inhibition and Medicinal Chemistry in 2020 | CAS: 39546-32-2

Piperidine-4-carboxamide(cas: 39546-32-2) belongs to anime. The reaction of alkyl halides, R―X, where X is a halogen, or analogous reagents with ammonia (or amines) is useful with certain compounds. Not all alkyl halides are effective reagents; the reaction is sluggish with secondary alkyl groups and fails with tertiary ones. Its usefulness is largely confined to primary alkyl halides (those having two hydrogen atoms on the reacting site).Recommanded Product: 39546-32-2

The author of 《Design, synthesis, in vitro and in vivo evaluation of benzylpiperidine-linked 1,3-dimethylbenzimidazolinones as cholinesterase inhibitors against Alzheimer’s disease》 were Mo, Jun; Chen, Tingkai; Yang, Hongyu; Guo, Yan; Li, Qi; Qiao, Yuting; Lin, Hongzhi; Feng, Feng; Liu, Wenyuan; Chen, Yao; Liu, Zongliang; Sun, Haopeng. And the article was published in Journal of Enzyme Inhibition and Medicinal Chemistry in 2020. Recommanded Product: 39546-32-2 The author mentioned the following in the article:

Cholinesterase inhibitor plays an important role in the treatment of patients with Alzheimer’s disease (AD). Herein, we report the medicinal chem. efforts leading to a new series of 1,3-dimethylbenzimidazolinone derivatives Among the synthesized compounds, and showed submicromolar IC50 values (, eeAChE IC50 = 0.39 ± 0.11μM; , eqBChE IC50 = 0.16 ± 0.04μM) towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Kinetic and mol. modeling studies revealed that and act in a competitive manner. and showed neuroprotective effect against H2O2-induced oxidative damage on PC12 cells. This effect was further supported by their antioxidant activity determined in a DPPH assay in vitro. Morris water maze test confirmed the memory amelioration effect of the two compounds in a scopolamine-induced mouse model. Moreover, the hepatotoxicity of and was lower than tacrine. In summary, these data suggest and are promising multifunctional agents against AD. The results came from multiple reactions, including the reaction of Piperidine-4-carboxamide(cas: 39546-32-2Recommanded Product: 39546-32-2)

Piperidine-4-carboxamide(cas: 39546-32-2) belongs to anime. The reaction of alkyl halides, R―X, where X is a halogen, or analogous reagents with ammonia (or amines) is useful with certain compounds. Not all alkyl halides are effective reagents; the reaction is sluggish with secondary alkyl groups and fails with tertiary ones. Its usefulness is largely confined to primary alkyl halides (those having two hydrogen atoms on the reacting site).Recommanded Product: 39546-32-2

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhang, Zhe’s team published research in Journal of Enzyme Inhibition and Medicinal Chemistry in 2021 | CAS: 622-26-4

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKQuality Control of 2-(Piperidin-4-yl)ethanol

Zhang, Zhe; Zhang, Zhao-Sheng; Wang, Xiao; Xi, Gao-Lei; Jin, Zhen; Tang, You-Zhi published an article in 2021. The article was titled 《A click chemistry approach to pleuromutilin derivatives, evaluation of anti-MRSA activity and elucidation of binding mode by surface plasmon resonance and molecular docking》, and you may find the article in Journal of Enzyme Inhibition and Medicinal Chemistry.Quality Control of 2-(Piperidin-4-yl)ethanol The information in the text is summarized as follows:

A series of pleuromutilin analogs containing substituted 1,2,3-triazole moieties I [R1 = Me, Ph, 3-fluorophenyl, etc.] and II [R2 = R3 = Me, cyclohexyl, etc.] were designed, synthesized and assessed for their in vitro antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA). Initially, the in vitro antibacterial activities of these derivatives against 4 strains of S. aureus (MRSA ATCC 43300, ATCC 29213, AD3, and 144) were tested by the broth dilution method. Most of the synthesized pleuromutilin analogs displayed potent activities. Among them, compounds I [R1 = 2-methylphenyl, 2-nitrophenyl, 4-nitrophenyl] (MIC = 0.5∼1 μg/mL) showed the most effective antibacterial activity and their anti-MRSA activity were further studied by the time-killing kinetics approach. Binding mode investigations by surface plasmon resonance (SPR) with 50S ribosome revealed that the selected compounds all showed obvious affinity for 50S ribosome (KD = 2.32 x 10-8∼5.10 x 10-5 M). Subsequently, the binding of compounds I [R1 = 2-methylphenyl, 4-nitrophenyl] to the 50S ribosome was further investigated by mol. modeling. Compound I [R1 = 2-methylphenyl] had a superior docking mode with 50S ribosome, and the binding free energy of compound was calculated to be -12.0 kcal/mol. In the experiment, the researchers used many compounds, for example, 2-(Piperidin-4-yl)ethanol(cas: 622-26-4Quality Control of 2-(Piperidin-4-yl)ethanol)

2-(Piperidin-4-yl)ethanol(cas: 622-26-4) have been used as an intermediate in the synthetic preparation of cellular-active allosteric inhibitors of FAKQuality Control of 2-(Piperidin-4-yl)ethanol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Li, Guang’s team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2022 | CAS: 826-36-8

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Computed Properties of C9H17NO

《Fe3O4 supported on water caltrop-derived biochar toward peroxymonosulfate activation for urea degradation: the key role of sulfate radical》 was written by Li, Guang; Cao, Xiao-qiang; Meng, Na; Huang, Yi-meng; Wang, Xu-dong; Gao, Yuan-yuan; Li, Xuan; Yang, Ting-shu; Li, Bo-lai; Zhang, Yi-zhen; Lyu, Xian-jun; Liang, Yue. Computed Properties of C9H17NO And the article was included in Chemical Engineering Journal (Amsterdam, Netherlands) on April 1 ,2022. The article conveys some information:

A new type of iron-doped and porous biochar (Fe@BC) derived from water caltrop was systematically investigated to catalyze the organic pollutants degradation by peroxymonosulfate (PMS). The effectiveness of this novel material was tested by treating excessive urea concentrations in swimming pool water. It exhibited good PMS activation capacity, achieving urea removal of 100% within 15 min. The Fe@BC/PMS system exhibited excellent resistance to common anions. Only chloride showed a small inhibitory effect, and the removal efficiency of urea decreased by 10% ([Cl-]0 = 10 mM). Quenching experiments and ESR spectroscopy analyses demonstrated that urea degradation was mainly mediated by the radical pathway, which in turn was dominated by surface-bound sulfate radicals (SO4·-). Further, reusability experiments confirmed the stability of the material. After three cycles, the degradation efficiency can still reach 86%. Therefore, the conversion of water caltrop-derived biochar into a composite catalytic material provides a novel strategy for value-added utilization of aquatic waste biomass, and it is also a promising alternative for the treatment of urea from swimming pool water.Triacetonamine(cas: 826-36-8Computed Properties of C9H17NO) was used in this study.

Triacetonamine(cas: 826-36-8) is a member of piperidine. Piperidine is ubiquitous structural motif widely occurred in diverse synthetically and naturally occurring bioactive molecules. Piperidines are an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.Computed Properties of C9H17NO

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem