Sun, Hongwei team published research on Environmental Science & Technology in 2020 | 2403-88-5

Recommanded Product: 2,2,6,6-Tetramethyl-4-piperidinol, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Recommanded Product: 2,2,6,6-Tetramethyl-4-piperidinol.

Sun, Hongwei;He, Fei;Choi, Wonyong research published 《 Production of Reactive Oxygen Species by the Reaction of Periodate and Hydroxylamine for Rapid Removal of Organic Pollutants and Waterborne Bacteria》, the research content is summarized as follows. Periodate (PI, IO4) can be activated by hydroxylamine (HA), resulting in rapid removal of organic pollutants (within seconds). While previous studies on PI-based advanced oxidation processes proposed iodate radical (IO3) as the major reactive species, no evidence of IO3 production was observed in the present PI/HA system. Reactive oxygen species (ROS) including OH, HO2, and 1O2, are proposed to be the main oxidants of the PI/HA system, as supported by tests using scavengers, chem. probes, and spin-trapping ESR. To minimize the risk of toxic iodinated byproduct formation caused by reactive iodine species, e.g., HOI and I2, the HA:PI molar ratio was optimized at 0.6 to achieve a stoichiometric conversion of IO4 to iodate (IO3), a preferred non-toxic I species sink. The PI/HA system also efficiently inactivated Gram-pos. and Gram-neg. bacteria, producing 1O2 as the dominant disinfectant. The ROS production mechanism was also assessed and is discussed in detail. This work offers a simple, highly efficient option for PI activation and ROS production which may find useful applications where urgent, rapid toxic pollutant removal is needed.

Recommanded Product: 2,2,6,6-Tetramethyl-4-piperidinol, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Song, Heng team published research on Organic Letters in 2020 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Name: 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. It is a colorless liquid with an odor described as objectionable, and typical of amines. Name: 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid.

Song, Heng;Cheng, Ran;Min, Qiao-Qiao;Zhang, Xingang research published 《 Decarboxylative and Deaminative Alkylation of Difluoroenoxysilanes via Photoredox Catalysis: A General Method for Site-Selective Synthesis of Difluoroalkylated Alkanes》, the research content is summarized as follows. A general method for site-selective difluoroalkylation of alkyl carboxylic redox esters with difluoroenoxysilanes through photoredox-catalyzed decarboxylative reaction has been developed. The reaction can also be extended to aliphatic amine derived pyridinium salts. This method has the advantages of high efficiency, mild reaction conditions, and broad substrate scope, including primary, secondary, and sterically hindered tertiaryl alkyl substrates, providing a general and practical route for applications in organic synthesis and pharmaceutical studies.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Name: 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Shimazumi, Ryoma team published research on Journal of the American Chemical Society in 2022 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Safety of 4-Piperidinol

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Safety of 4-Piperidinol.

Shimazumi, Ryoma;Tanimoto, Riku;Kodama, Takuya;Tobisu, Mamoru research published 《 Palladium-Catalyzed Unimolecular Fragment Coupling of N-Allylamides via Elimination of Isocyanate》, the research content is summarized as follows. A new unimol. fragment coupling (UFC) reaction that involves the palladium-catalyzed elimination of an isocyanate fragment from an amide, with the formation of carbon-carbon and carbon-heteroatom bonds was reported. An organometallic intermediate that is relevant to the catalytic reaction was characterized by X-ray crystallog. This UFC reaction enables the late-stage transformation of an amide functionality, allowing amides to be used as a convertible directing or protecting group.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Safety of 4-Piperidinol

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Shigemitsu, Hajime team published research on Chemical Science in 2020 | 2403-88-5

SDS of cas: 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. SDS of cas: 2403-88-5.

Shigemitsu, Hajime;Tani, Youhei;Tamemoto, Tomoe;Mori, Tadashi;Li, Xinxi;Osakada, Yasuko;Fujitsuka, Mamoru;Kida, Toshiyuki research published 《 Aggregation-induced photocatalytic activity and efficient photocatalytic hydrogen evolution of amphiphilic rhodamines in water》, the research content is summarized as follows. The development of photocatalysts is an essential task for clean energy generation and establishing a sustainable society. This paper describes the aggregation-induced photocatalytic activity (AI-PCA) of amphiphilic rhodamines and photocatalytic functions of the supramol. assemblies. The supramol. assemblies consisting of amphiphilic rhodamines with octadecyl alkyl chains exhibited significant photocatalytic activity under visible light irradiation in water, while the corresponding monomeric rhodamines did not exhibit photocatalytic activity. The studies on the photocatalytic mechanism by spectroscopic and microscopic analyses clearly demonstrated the AI-PCA of the rhodamines. Moreover, the supramol. assemblies of the rhodamines exhibited excellent photocatalytic hydrogen evolution rates (up to 5.9 mmol g-1 h-1).

SDS of cas: 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Shi, Shuai team published research on Nature Communications in 2021 | 5382-16-1

Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Application of C5H11NO.

Shi, Shuai;Qiu, Wenting;Miao, Pannan;Li, Ruining;Lin, Xianfeng;Sun, Zhankui research published 《 Three-component radical homo Mannich reaction》, the research content is summarized as follows. By employing a radical process, enolizable aldehydes were utilized as substrates in the three-component radical homo-Mannich reaction for the streamlined synthesis of γ-amino-carbonyl compounds. The electrophilic radicals were generated from thiols HSCHR1C(O)R2 (R1 = H, Me; R2 = Me, EtO, PhCH2O, 1-adamantyl, Et2N, etc.) via the desulfurization process facilitated by visible-light, and then added to the electron-rich double bonds of enamines, formed in-situ from aldehydes or ketones R3CH2C(O)R4 [R3 = H, Et, MeSCH2, Ph, PhCH2, etc., R4 = H; R3 = H, R4 = Ph, 3-FC6H4, etc.; R3R4 = (CH2)5, CH2CHPhCH2CH2, CH2N(CH2Ph)CH2CH2, etc.] and amines R5NHR6 [R5 = Me, R6 = H2C:CHCH2, PhCH2, cyclohexyl, etc.; R5 = PhCH2, R6 = PhCH2, EtO2CCH2, etc.; R5R6 = (CH2)4, CHPh(CH2)3, etc.] to provide the products I in a single step. The broad scope, mild conditions, high functional group tolerance, and modularity of this metal-free approach for the synthesis of complex tertiary amine scaffolds will likely be of great utility to chemists in both academia and industry.

Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Shi, Jinyu team published research on Chemical Engineering Journal (Amsterdam, Netherlands) in 2022 | 2403-88-5

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Quality Control of 2403-88-5

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Quality Control of 2403-88-5.

Shi, Jinyu;Sun, Dezhi;Dang, Yan;Qu, Dan research published 《 Characterizing the degradation of refractory organics from incineration leachate membrane concentrate by VUV/O3》, the research content is summarized as follows. In this study, we used a combined vacuum-UV (VUV) and O3 process treating the chem. precipitation pre-treated incineration leachate membrane concentrate to further decompose substantial refractory organics which led to membrane organic fouling in the subsequent membrane distillation process. The highest removal of COD (88.1%) was achieved when 50 mg/min of O3 dosage was used at a pH of 11.5-12. Multi-spectrum methods, mol. weight distribution (MW), gas chromatog.-mass spectrometry (GC-MS), two-dimensional correlation spectroscopy (2D-COS), and hetero-spectral 2D-COS were used to investigate the organics degradation mechanism. The combined action of O3 and hydroxyl radicals (·OH) effectively degraded macromol. organics with high aromaticity and high conjugation (mainly distributed at 1-3 kDa) into aliphatic products with lower mol. weight (<1 kDa) and simple structures. The order of organics that were oxidized were humic-like acids > fulvic-like acids > protein-like substances. Organic acids (acetate, propionate, and butyrate) also accumulated in the VUV/O3 systems.

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Quality Control of 2403-88-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Shi, Hongwei team published research on Green Chemistry in 2022 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Category: piperidines

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. It is a colorless liquid with an odor described as objectionable, and typical of amines. Category: piperidines.

Shi, Hongwei;Li, Jun;Wang, Tao;Rudolph, Matthias;Hashmi, A. Stephen K. research published 《 Catalyst- and additive-free sunlight-induced autoxidation of aldehydes to carboxylic acids》, the research content is summarized as follows. A catalyst- and additive-free sunlight-induced strategy for autoxidation of a wide range of aldehydes RCHO (R = Bu, cyclohexyl, Ph, pyridin-3-yl, etc.) to carboxylic acids RC(O)OH is described for the first time. In this oxidation system, air serves as the source of oxygen and sunlight as the light source, and the system includes the advantages of green, highly atom-efficient, and low-cost synthesis. This method was easily applied even at gram scale. The reaction proceeds smoothly even at lower temperature and in natural light.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Category: piperidines

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Shen, Zhengnan team published research on Journal of Medicinal Chemistry in 2022 | 84358-13-4

Quality Control of 84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Quality Control of 84358-13-4.

Shen, Zhengnan;Ratia, Kiira;Cooper, Laura;Kong, Deyu;Lee, Hyun;Kwon, Youngjin;Li, Yangfeng;Alqarni, Saad;Huang, Fei;Dubrovskyi, Oleksii;Rong, Lijun;Thatcher, Gregory R. J.;Xiong, Rui research published 《 Design of SARS-CoV-2 PLpro inhibitors for COVID-19 antiviral therapy leveraging binding cooperativity》, the research content is summarized as follows. Antiviral agents that complement vaccination are urgently needed to end the COVID-19 pandemic. The SARS-CoV-2 papain-like protease (PLpro), one of only two essential cysteine proteases that regulate viral replication, also dysregulates host immune sensing by binding and deubiquitination of host protein substrates. PLpro is a promising therapeutic target, albeit challenging owing to featureless P1 and P2 sites recognizing glycine. To overcome this challenge, we leveraged the cooperativity of multiple shallow binding sites on the PLpro surface, yielding novel 2-phenylthiophenes with nanomolar inhibitory potency. New cocrystal structures confirmed that ligand binding induces new interactions with PLpro: by closing of the BL2 loop of PLpro forming a novel “BL2 groove” and by mimicking the binding interaction of ubiquitin with Glu167 of PLpro. Together, this binding cooperativity translates to the most potent PLpro inhibitors reported to date, with slow off-rates, improved binding affinities, and low micromolar antiviral potency in SARS-CoV-2-infected human cells.

Quality Control of 84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Sharninghausen, Liam S. team published research on Journal of the American Chemical Society in 2022 | 5382-16-1

Reference of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Reference of 5382-16-1.

Sharninghausen, Liam S.;Preshlock, Sean;Joy, Stephen T.;Horikawa, Mami;Shao, Xia;Winton, Wade P.;Stauff, Jenelle;Kaur, Tanpreet;Koeppe, Robert A.;Mapp, Anna K.;Scott, Peter J. H.;Sanford, Melanie S. research published 《 Copper-mediated radiocyanation of unprotected amino acids and peptides》, the research content is summarized as follows. This report describes a copper-mediated radiocyanation of aryl halides that is applicable to complex mols. This transformation tolerates an exceptionally wide range of functional groups, including unprotected amino acids. As such, it enables the site-specific introduction of [11C]CN into peptides at an iodophenylalanine residue. The use of a diamine-ligated copper(I) mediator is crucial for achieving high radiochem. yield under relatively mild conditions, thus limiting racemization and competing side reactions of other amino acid side chains. The reaction has been scaled and automated to deliver radiolabeled peptides, including analogs of adrenocorticotropic hormone 1-27 (ACTH) and nociceptin (NOP). For instance, this Cu-mediated radiocyanation was leveraged to prepare >40 mCi of [11C]cyano-NOP to evaluate biodistribution in a primate using positron emission tomog. This investigation provides preliminary evidence that nociceptin crosses the blood-brain barrier and shows uptake across all brain regions (SUV > 1 at 60 min post injection), consistent with the known distribution of NOP receptors in the rhesus brain.

Reference of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Shalini team published research on Journal of Molecular Structure in 2022 | 5382-16-1

Synthetic Route of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Synthetic Route of 5382-16-1.

Shalini;Lata, Shubham;Saha, Sourav Taru;Kaur, Mandeep;Awolade, Paul;Ebenezer, Oluwakemi;Singh, Parvesh;Kumar, Vipan research published 《 Tetrahydro-β-carboline-naphthalimide hybrids: synthesis and anti-proliferative evaluation on estrogen-dependent and triple-negative breast cancer cells》, the research content is summarized as follows. A series of tetrahydro-β-carboline-naphthalimide hybrids I [X = (CH2)n; n = 1, 2, 3; R = H, Br, 1-piperidinyl, 4-morpholinyl, 4-hydroxy-1-piperidinyl, 4-(2-hydroxyethyl)-1-piperazinyl] were designed and synthesized via an amide coupling reaction. The obtained hybrids were evaluated for their growth inhibitory potential against MCF7 and MDA-MB-231 breast cancer cell lines using MTT assay. Three of the promising hybrids with IC50s < 43μM were further scrutinized for their interactions with selected target, i.e. estrogen receptor ERα. The designed template showed a decent growth inhibitory potential on breast cancer cells with high safety profile and hence, the present manuscript reveals the success rate of hybridization technique in clubbing two individual anti-cancer cores, i.e. tetrahydro-β-carboline and naphthalimide.

Synthetic Route of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem