Zhang, Yanzhi team published research on Steroids in 2020 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., SDS of cas: 84358-13-4

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. SDS of cas: 84358-13-4.

Zhang, Yanzhi;Chen, Xubing;Zhou, Yang;Hou, Jinjun;Long, Huali;Zhang, Zijia;Lei, Min;Wu, Wanying research published 《 Synthesis of oleandrin derivatives and their cytotoxic activity》, the research content is summarized as follows. A series of oleandrin-4′-yl ester derivatives, e.g. I.HCl, were designed, synthesized, and evaluated for their proliferation inhibition activities against tumor cell lines. Cytotoxicity data revealed that the C4‘ moiety had an important influence on cytotoxic activity. Several compounds that we designed and synthesized exhibit significant in vitro antiproliferative activity against the tested tumor cell lines. Among the derivatives of OL, I.HCl not only had good antitumor activity but also had good water solubility Furthermore, I.HCl can significantly inhibit tumor growth by 96.4% at a dose of 6 mg/kg/d by i.p.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., SDS of cas: 84358-13-4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhang, Yang team published research on Journal of Power Sources in 2021 | 5382-16-1

Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Application of C5H11NO.

Zhang, Yang;Chen, Wanting;Li, Tiantian;Yan, Xiaoming;Zhang, Fan;Wang, Xiaozhou;Wu, Xuemei;Pang, Bo;He, Gaohong research published 《 A rod-coil grafts strategy for N-spirocyclic functionalized anion exchange membranes with high fuel cell power density》, the research content is summarized as follows. N-spirocyclic cations possess double-cyclic non-planar structure that exhibit the highest alkali stability among quaternary ammonium cations, however, the extremely rigidity usually causes fragile membranes and poor conductivity In this work, a rod-coil grafts design is proposed for N-spirocyclic anion exchange membranes (AEMs), in which microphase separation of the hydrophilic N-spirocyclic rod grafts is significantly improved by the hydrophobic aggregation of the flexible alkyl coil grafts with polysulfone backbone. Mol. dynamic simulations indicate that the coil grafts contribute to microphase separation but fill in free volume to reduce water reservoir, therefore the rod-coil grafts design provides a way to evaluate the effects of microphase separation and free volume on conductivity The increasing conductivity with the length of coil grafts suggests a greater contribution of good microphase separation to OH- conduction. With optimized n-octylamine hydrophobic coil graft length, the N-spirocyclic AEM exhibits toughness (elongation at break of about 28.7%) and high OH- conductivity (136.2 mS cm-1 at 80°C), resulting in high power d. (850.1 mW cm-2), which is far greater than that assemble with other N-spirocyclic AEMs, and also bring N-spirocyclic AEMs into the top level of the cycloaliphatic AEMs reported in literatures.

Application of C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhang, Wenliang team published research on Organic Chemistry Frontiers in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Related Products of 5382-16-1

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Related Products of 5382-16-1.

Zhang, Wenliang;Yao, Yujing;Xu, Yaling;Zhou, Xueying;Wu, Ge research published 《 Amine hydrochloride salts as bifunctional reagents for the radical aminochlorination of maleimides》, the research content is summarized as follows. Herein, a new utilization of amine hydrochloride as a bifunctional reagent was disclosed and demonstrated via the copper-catalyzed aminochlorination of maleimides I (R = Me, Ph, cyclohexyl, thiophen-2-ylmethyl, etc.). The prominent features of this transformation were found to include the simple and efficient catalyst system, broad substrate scope, readily scalable reaction, and late-stage modification of small-mol. drugs such as maprotiline hydrochloride, fluoxetine hydrochloride, nortropine hydrochloride, etc.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Related Products of 5382-16-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhang, Wenjuan team published research on Bioorganic & Medicinal Chemistry in 2020 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., COA of Formula: C11H19NO4

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. It is a colorless liquid with an odor described as objectionable, and typical of amines. COA of Formula: C11H19NO4.

Zhang, Wenjuan;Wei, Zhao;Huang, Guozhi;Xie, Fei;Zheng, Zhibing;Li, Song research published 《 Study of triaryl-based sulfamic acid derivatives as HPTPβ inhibitors》, the research content is summarized as follows. A series of novel triaryl-based sulfamic acid analogs I [R = H, 3-FC6H4CH2C(O), 4-MeOC6H4SO2, etc.; Ar = Ph, 4-phenylthiazol-2-yl, 4-(2-thienyl)thiazol-2-yl] was designed, synthesized and evaluated as inhibitors of human protein tyrosine phosphatase beta (HPTPβ). A novel, easy and efficient synthetic method was developed for target compounds I, and the activity determination results showed that most of compounds were good HPTPβ inhibitors. Interestingly, the compounds I [R = 1-tert-butoxycarbonylpiperidine-4-carbonyl, Ar = Ph; R = H, Ar = 4-(2-thienyl)thiazol-2-yl] with simple structure not only showed potent inhibitory activity on HPTPβ but also had good inhibitory selectivity over other PTPs (PTP1B, SHP2, LAR and TC-PTP). The mol. docking simulation of compounds with the protein HPTPβ helped to understand the structure-activity relationship and clarified some confusing assay results. This research provided references for further drug design of HPTPβ and other PTPs inhibitors.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., COA of Formula: C11H19NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhang, Wei team published research on Journal of Environmental Chemical Engineering in 2021 | 2403-88-5

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Synthetic Route of 2403-88-5

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. It is a colorless liquid with an odor described as objectionable, and typical of amines. Synthetic Route of 2403-88-5.

Zhang, Wei;Yan, Liangguo;Wang, Qiaodi;Li, Xuguang;Guo, Yanxiu;Song, Wen;Li, Yanfei research published 《 Ball milling boosted the activation of peroxymonosulfate by biochar for tetracycline removal》, the research content is summarized as follows. Biochar materials have been commonly applied in advanced oxidation processes, and various strategies were explored to enhance the practical performance of biochar. In this study, ball milling, a simple grinding method, were used to treat biochar, and the ball-milled biochar materials were used to activate peroxymonosulfate (PMS) for tetracycline (TC) removal. It was demonstrated that the ball-milled biochar materials using different ball mass ratios and ball milling time benefited the generation of oxygen-functional groups and defects on the surface, thereby enhanced the catalytic performance of biochar to degrade TC. Besides, the different exptl. conditions (initial pH, catalyst dosage, PMS dosage, and TC dosage) and coexisting substances all affected the degradation efficiency of TC. ESR and radicals quenching experiments showed that the radicals attached to the biochar contributed greatly to the degradation of TC, and both free radicals and non-free radicals participated in the TC degradation process.

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Synthetic Route of 2403-88-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhang, Meng team published research on Coloration Technology in 2021 | 2403-88-5

Related Products of 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Related Products of 2403-88-5.

Zhang, Meng;Zhang, Yan;Liu, Ying;Ren, Xuehong;Huang, Tung-Shi research published 《 Simultaneous low-salt dyeing and anti-bacterial finishing of cotton fabric with reactive dye and N-halamine》, the research content is summarized as follows. A reactive dye, Novacron Deep Orange S-4R, and an anti-bacterial precursor, 4-(4-(2,2,6,6-tetramethyl-4-piperidinol)-6-chloro-1,3,5-triazinylamino)-benzenesulfonate, both of which are monohalogenated-s-triazine-based compounds, were chosen for the simultaneous dyeing and anti-bacterial finishing of cotton fabric. To effectively reduce the emissions of pollutants and the dosage of sodium sulfate added during dyeing and finishing, a cationization reagent, 2,3-epoxypropyltrimethylammonium chloride, was used to modify cotton fabric before dyeing and finishing. The cationized cotton fabrics obtained 0.18% active chlorine loadings and good dye depth after the simultaneous dyeing and finishing process with low addition of sodium sulfate. The chlorinated fabrics inactivated all inoculated Staphylococcus aureus (Gram-pos.) and Escherichia coli (Gram-neg.) within 10 min of contact. The treated cotton fabric maintained high breaking strength as well as good washing stability.

Related Products of 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhang, Liangliang team published research on Applied Catalysis, B: Environmental in 2021 | 2403-88-5

Related Products of 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Related Products of 2403-88-5.

Zhang, Liangliang;Wang, Kai;Yu, Luying;Luo, Kaijie;Guo, Shaopeng;Chen, Hong;Li, Xiang;Chen, Yonghang;Yu, Xin;Qian, Yajie;Liu, Yanbiao;Xue, Gang research published 《 Why does sludge-based hydochar activate peroxydisulfate to remove atrazine more efficiently than pyrochar》, the research content is summarized as follows. Sludge-derived hydrochar (HC) and pyrochar (PC) by hydrothermal and pyrolytic treatments were compared their peroxydisulfate (PDS) activation capacities toward atrazine (ATZ) removal. The HC alone induced lower ATZ removal than PC alone. However, ATZ removal was significantly enhanced in HC/PDS system rather than in PC/PDS system. ATZ removal via adsorption was very low, and singlet oxygen (1O2) primarily contributed to its removal, independently on the PDS addition Compared to HC, PC possessed stronger electron transfer capacity, exhibiting a higher ATZ removal. After PDS addition, humic substances (HS) in HC (36.3 ± 2.4 mg/g) played a decisive role in enhanced ATZ degradation: PDS excited HS to a triplet state (3HS*); then, PDS and 3HS* together yielded more 1O2. Meanwhile, 3HS* accelerated electron transfer on HC surface. Thus, more electrons were transferred from AZT to 1O2. However, function of small amount of HS in PC (1.5 ± 0.2 mg/g) could be ignored.

Related Products of 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhang, Juan team published research on Chemical Papers in 2021 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Recommanded Product: 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Recommanded Product: 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid.

Zhang, Juan;Ge, Yong-Xi;Fang, Lei;Zhu, Kong-Kai;Liu, Shan-Kui;Wang, Kai-Ming;Jiang, Cheng-Shi research published 《 Discovery of 3-(1H-indol-5-yl)-1,2,4-oxidizable derivatives as non-competitive α-glucosidase inhibitors》, the research content is summarized as follows. In this study, indolyl-1,2,4-oxidizable derivatives were synthesized and in vitro evaluated as new class of non-competitive α-glucosidase inhibitors. Most of the compounds showed better inhibitory activity than reference drug (acarbose), with compound 35 being the most potent inhibitor. Kinetic anal. indicated that compound 35 had non-competitive inhibition on α-glucosidase, and fluorescence quenching experiment confirmed the direct binding of 35 to α-glucosidase. Besides, some selected compounds had no effect on cell viability of human normal hepatocyte (LO2) and human liver cancer (HepG2) cells. Thus, this work provides a new chemotype for developing novel drugs against type 2 diabetes.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Recommanded Product: 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhang, Jinqiang team published research on Nature Communications in 2019 | 2403-88-5

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Reference of 2403-88-5

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Reference of 2403-88-5.

Zhang, Jinqiang;Sun, Bing;Zhao, Yufei;Tkacheva, Anastasia;Liu, Zhenjie;Yan, Kang;Guo, Xin;McDonagh, Andrew M.;Shanmukaraj, Devaraj;Wang, Chengyin;Rojo, Teofilo;Armand, Michel;Peng, Zhangquan;Wang, Guoxiu research published 《 A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries》, the research content is summarized as follows. Due to the high theor. specific energy, the lithium-oxygen battery has been heralded as a promising energy storage system for applications such as elec. vehicles. However, its large over-potentials during discharge-charge cycling lead to the formation of side-products, and short cycle life. Herein, we report an ionic liquid bearing the redox active 2,2,6,6-tetramethyl-1-piperidinyloxy moiety, which serves multiple functions as redox mediator, oxygen shuttle, lithium anode protector, as well as electrolyte solvent. The additive contributes a 33-fold increase of the discharge capacity in comparison to a pure ether-based electrolyte and lowers the over-potential to an exceptionally low value of 0.9 V. Meanwhile, its mol. facilitates smooth lithium plating/stripping, and promotes the formation of a stable solid electrolyte interface to suppress side-reactions. Moreover, the proportion of ionic liquid in the electrolyte influences the reaction mechanism, and a high proportion leads to the formation of amorphous lithium peroxide and a long cycling life (> 200 cycles). In particular, it enables an outstanding electrochem. performance when operated in air.

2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Reference of 2403-88-5

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Zhang, Benxiang team published research on Nature (London, United Kingdom) in 2022 | 84358-13-4

HPLC of Formula: 84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Piperidine is an organic compound with the molecular formula (CH2)5NH. This heterocyclic amine consists of a six-membered ring containing five methylene bridges (–CH2–) and one amine bridge (–NH–). 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. It is a colorless liquid with an odor described as objectionable, and typical of amines. HPLC of Formula: 84358-13-4.

Zhang, Benxiang;Gao, Yang;Hioki, Yuta;Oderinde, Martins S.;Qiao, Jennifer X.;Rodriguez, Kevin X.;Zhang, Hai-Jun;Kawamata, Yu;Baran, Phil S. research published 《 Ni-electrocatalytic Csp3-Csp3 doubly decarboxylative coupling》, the research content is summarized as follows. Here, it was shown how a mildly reductive Ni-electrocatalytic system could couple two different carboxylates by means of in situ generated redox-active esters, termed doubly decarboxylative cross-coupling. This operationally simple method was used to heterocouple primary, secondary and even certain tertiary redox-active esters, thereby opening up a powerful new approach for synthesis. The reaction, which cannot be mimicked using stoichiometric metal reductants or photochem. conditions, tolerated a range of functional groups, was scalable and was used for the synthesis of 32 known compounds, reducing overall step counted by 73%.

HPLC of Formula: 84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem