Xu, Lijuan team published research on Chinese Chemical Letters in 2022 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Formula: C11H19NO4

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Formula: C11H19NO4.

Xu, Lijuan;Tu, Ye;Li, Jiao;Zhang, Wannian;Wang, Zhibin;Zhuang, Chunlin;Xue, Lei research published 《 Structure-based optimizations of a necroptosis inhibitor (SZM594) as novel protective agents of acute lung injury》, the research content is summarized as follows. Targeting RIPK1 is a promising strategy for the treatment or alleviation of acute lung injury (ALI). SZM594, a benzothiazole compound previously developed by our research group, possessed good dual-targeting receptor-interacting protein kinase 1 (RIPK1) and RIPK3 activity and anti-necroptosis activity as well as acceptable in vivo efficacy. In this study, the cyclopropyl moiety of SZM594 was modified based on a structure-based design strategy. The resulting cyclohexanone-containing analog 41 improved the selectivity toward RIPK1 over RIPK3 and the anti-necroptosis activity was also increased compared with those of SZM594. More importantly, compound 41 could inhibit the tumor necrosis factor-α (TNF-α) expression in lipopolysaccharide (LPS)-induced peritoneal macrophage cell model, and significantly alleviate LPS-induced ALI in a mouse model. This compound could significantly inhibit the expressions of the phosphorylation of RIPK1 and down-stream RIPK3 and mixed lineage kinase domain-like protein (MLKL). Thus, these cyclohexanone-containing benzothiazole analogs represent promising lead structures for the discovery of novel protective agents of ALI.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Formula: C11H19NO4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Xi, Xiaoxiang team published research on Angewandte Chemie, International Edition in 2022 | 84358-13-4

Recommanded Product: 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Recommanded Product: 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid.

Xi, Xiaoxiang;Luo, Yixin;Li, Weirong;Xu, Minghao;Zhao, Hongping;Chen, Yukun;Zheng, Songlin;Qi, Xiaotian;Yuan, Weiming research published 《 From Esters to Ketones via a Photoredox-Assisted Reductive Acyl Cross-Coupling Strategy》, the research content is summarized as follows. A method was developed for ketone synthesis via a photoredox-assisted reductive acyl cross-coupling (PARAC) using a nickel/photoredox dual-catalyzed cross-electrophile coupling of two different carboxylic acid esters. A variety of aryl, 1°, 2°, 3°-alkyl 2-pyridyl esters could act as acyl electrophiles while N-(acyloxy)phthalimides (NHPI esters) act as 1°, 2°, 3°-radical precursors. Our PARAC strategy provides an alternative and reliable way to synthesize various sterically congested 3°-3°, 3°-2°, and aryl-3° ketones under mild and highly unified conditions, which have been otherwise difficult to access. The combined exptl. and computational studies identified a Ni0/NiI/NiIII pathway for ketone formation.

Recommanded Product: 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Xi, Ji-Ming team published research on Organic Letters in 2022 | 84358-13-4

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Electric Literature of 84358-13-4

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Electric Literature of 84358-13-4.

Xi, Ji-Ming;Sun, Yun-Hai;Li, Wen-Cheng;Wu, Yu-Heng;Wei, Zhong-Lin;Liao, Wei-Wei research published 《 Radical Alkene-Trifluoromethylation-Triggered Nitrile Insertion/Remote Functionalization Relay Processes: Diverse Synthesis of Trifluoromethylated Azaheterocycles Enabled by Copper Catalysis》, the research content is summarized as follows. A copper-catalyzed trifluoromethylation-of-alkenes-triggered nitrile insertion/remote functionalization relay process has been achieved, in which an “interrupted” remote 1, n-difunctionalizations of alkenes with a nitrile insertion, can deliver iminyl radical intermediate, followed by subsequent 1, n-HAT to furnish corresponding remote functionalization, instead of C-based radical. This relay protocol enabled a straightforward approach to streamline the assembly of structurally diverse trifluoromethylated azaheterocycles.

84358-13-4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., Electric Literature of 84358-13-4

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wu, Yu team published research on Bioorganic & Medicinal Chemistry in 2021 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Quality Control of 5382-16-1

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Quality Control of 5382-16-1.

Wu, Yu;Cheung, Chen-Yi;Zhou, Yang;Wang, Zhen;Tu, Zhengchao;Cook, Gregory M.;Lu, Xiaoyun research published 《 Discovery of 5-methylpyrimidopyridone analogues as selective antimycobacterial agents》, the research content is summarized as follows. With the emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MDR-TB) and extensive drug-resistant strains (XDR-TB), there is an urgent need to develop novel drugs for the treatment of tuberculosis. Here, the authors designed and synthesized a series of 5-methylpyrimidopyridone analogs I [R1 = NHEt, cyclopropylamino, 4-methylpiperidino, etc., R2 = (3s,5S,7s)-adamant-1-yl, cyclopentyl, cyclohexyl, R3 = 2-Cl, 4-Cl, H, 2-CN, etc.] as potential antitubercular agents. The most potent compound II exhibited a MIC value of 4μM in vitro against Mycobacterium tuberculosis. The antitubercular activities of the synthesized compounds were impacted by the amantadine and 2-chlorophenyl groups, and were enhanced by the presence of 3-methyl(4-dimethylamino)piperidinylphenyl. Mol. modeling and binding studies suggest that PknB is the potential mol. target of 5-methylpyrimidopyridone compounds This study provides insights for the future development of new antimycobacterial agents with novel mechanisms of action.

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., Quality Control of 5382-16-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wu, Qingmei team published research on Journal of Molecular Structure in 2022 | 5382-16-1

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., SDS of cas: 5382-16-1

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. SDS of cas: 5382-16-1.

Wu, Qingmei;Zheng, Zhaopeng;Ye, Wenjun;Guo, Qian;Liao, Tianhui;Yang, Di;Zhao, Chunshen;Liao, Weike;Chai, Huifang;Zhou, Zhixu research published 《 Synthesis, crystal and molecular structure, vibrational spectroscopic, DFT and molecular docking of 4-(2-chlorobenzyl)-1-(4-hydroxy-3- ((4-hydroxypiperidin-1-yl) methyl-5-methoxyphenyl)-[1,2,4] triazolo [4,3-a] quinazolin-5(4H)-one》, the research content is summarized as follows. In current work, triazolo[4,3-a]quinazolinone I was synthesized. The structural properties of I were explored using spectroscopy (1H NMR, 13C NMR, MS and FT-IR) and X-ray crystallog. method. The single-crystal structure confirmed by X-ray diffraction was consistent with the mol. structure optimized by d. functional theory (DFT) calculation at B3LYP/6-311 G (2d, p) level of theory. The geometrical parameters, mol. electrostatic potential (MEP) and frontier MO (FMO) anal. were performed by DFT using the B3LYP/6-311 G (2d, p) method. Mol. docking may suggest a favorable interaction between I and SHP2 protein. The mol. dynamics (MD) simulation results shown that there are hydrogen bonds, electrostatic interactions and Pi interactions between compound I and SHP2 proteins. The inhibitory activity of I on SHP2 protein was better than the reference compound (SHP244).

5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., SDS of cas: 5382-16-1

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wu, Liying team published research on Environmental Science & Technology in 2021 | 2403-88-5

Application In Synthesis of 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. Application In Synthesis of 2403-88-5.

Wu, Liying;Sun, Zhiqiang;Zhen, Yufei;Zhu, Shishu;Yang, Chen;Lu, Jing;Tian, Yu;Zhong, Dan;Ma, Jun research published 《 Oxygen Vacancy-Induced Nonradical Degradation of Organics: Critical Trigger of Oxygen (O2) in the Fe-Co LDH/Peroxymonosulfate System》, the research content is summarized as follows. Ubiquitous oxygen vacancies (Vo) existing in metallic compounds can activate peroxymonosulfate (PMS) for water treatment. However, under environmental conditions, especially oxygenated surroundings, the interactions between Vo and PMS as well as the organics degradation mechanism are still ambiguous. In this study, we provide a novel insight into the PMS activation mechanism over Vo-containing Fe-Co layered double hydroxide (LDH). Exptl. results show that Vo/PMS is capable of selective degradation of organics via a single-electron-transfer nonradical pathway. Moreover, O2 is firstly demonstrated as the most critical trigger in this system. Mechanistic studies reveal that, with abundant electrons confined in the vacant electron orbitals of Vo, O2 is thermodynamically enabled to capture electrons from Vo to form O2·- under the imprinting effect and start the activation process. Simultaneously, Vo becomes electron-deficient and withdraws the electrons from organics to sustain the electrostatic balance and achieve organics degradation (32% for Bisphenol A without PMS). Different from conventional PMS activation, under the collaboration of kinetics and thermodn., PMS is endowed with the ability to donate electrons to Vo as a reductant other than an oxidant to form 1O2. In this case, 1O2 and O2·- act as the indispensable intermediate species to accelerate the circulation of O2 (as high as 14.3 mg/L) in the micro area around Vo, and promote this nano-confinement electron-recycling process with 67% improvement of Bisphenol A degradation This study provides a brand-new perspective for the nonradical mechanism of PMS activation over Vo-containing metallic compounds in natural environments.

Application In Synthesis of 2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., 2403-88-5.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wolter, Madita team published research on Journal of Medicinal Chemistry in 2021 | 5382-16-1

COA of Formula: C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Piperidine the name comes from the genus name Piper, which is the Latin word for pepper. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Although piperidine is a common organic compound, it is best known as a representative structure element within many pharmaceuticals and alkaloids, such as natural-occurring solenopsins. COA of Formula: C5H11NO.

Wolter, Madita;Valenti, Dario;Cossar, Peter J.;Hristeva, Stanimira;Levy, Laura M.;Genski, Thorsten;Hoffmann, Torsten;Brunsveld, Luc;Tzalis, Dimitrios;Ottmann, Christian research published 《 An Exploration of Chemical Properties Required for Cooperative Stabilization of the 14-3-3 Interaction with NF-κB-Utilizing a Reversible Covalent Tethering Approach》, the research content is summarized as follows. Protein-protein modulation has emerged as a proven approach to drug discovery. While significant progress has been gained in developing protein-protein interaction (PPI) inhibitors, the orthogonal approach of PPI stabilization lacks established methodologies for drug design. Here, we report the systematic ”bottom-up” development of a reversible covalent PPI stabilizer. An imine bond was employed to anchor the stabilizer at the interface of the 14-3-3/p65 complex, leading to a mol. glue 24j (I) that elicited an 81-fold increase in complex stabilization. Utilizing protein crystallog. and biophys. assays, we deconvoluted how chem. properties of a stabilizer translate to structural changes in the ternary 14-3-3/p65/mol. glue complex. Furthermore, we explore how this leads to high cooperativity and increased stability of the complex.

COA of Formula: C5H11NO, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wittlinger, Florian team published research on Journal of Medicinal Chemistry in 2022 | 5382-16-1

Electric Literature of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 5382-16-1, formula is C5H11NO, Name is 4-Piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Electric Literature of 5382-16-1.

Wittlinger, Florian;Heppner, David E.;To, Ciric;Guenther, Marcel;Shin, Bo Hee;Rana, Jaimin K.;Schmoker, Anna M.;Beyett, Tyler S.;Berger, Lena M.;Berger, Benedict-Tilman;Bauer, Nicolas;Vasta, James D.;Corona, Cesear R.;Robers, Matthew B.;Knapp, Stefan;Jaenne, Pasi A.;Eck, Michael J.;Laufer, Stefan A. research published 《 Design of a “Two-in-One” Mutant-Selective Epidermal Growth Factor Receptor Inhibitor That Spans the Orthosteric and Allosteric Sites》, the research content is summarized as follows. Inhibitors targeting the epidermal growth factor receptor (EGFR) are an effective therapy for patients with non-small cell lung cancer harboring drug-sensitive activating mutations in the EGFR kinase domain. Drug resistance due to treatment-acquired mutations has motivated the development of successive generations of inhibitors that bind in the ATP site. The third-generation agent osimertinib is now a first-line treatment for this disease. Recently, allosteric inhibitors have been developed to overcome drug-resistant mutations that confer a resistance to osimertinib. Here, we present the structure-guided design and synthesis of a mutant-selective lead compound, which consists of a pyridinyl imidazole-fused benzylisoindolinedione scaffold that simultaneously occupies the orthosteric and allosteric sites. The compound potently inhibits enzymic activity in L858R/T790M/C797S mutant EGFR (4.9 nM), with a significantly lower activity for wild-type EGFR (47 nM). Addnl., this compound achieves modest cetuximab-independent and mutant-selective cellular efficacies on the L858R (1.2 μM) and L858R/T790M (4.4 μM) variants.

Electric Literature of 5382-16-1, 4-Hydroxypiperidine is a molecule with a carbonyl group. It is the most active and selective CCR5 receptor antagonist that has been studied to date. 4-Hydroxypiperidine inhibits HIV infection by preventing the binding of HIV to its receptor on the surface of white blood cells, thereby preventing it from entering these cells. 4-Hydroxypiperidine also acts as an anti-inflammatory agent in chronic bronchitis patients, due to its ability to inhibit prostaglandin synthesis. The chemical ionization mass spectra of this molecule show peaks for methyl ethyl, malic acid, and hydroxyl groups. These properties make 4-hydroxypiperidine a useful candidate for drug development against inflammatory diseases and several cancers.
The molecular structure, vibrational spectra, NBO and UV-spectral analysis of 4-Hydroxypiperidine have been studied. The compounds with a substituted 4-piperidinol core have been found to be potent antagonists of the human H receptor., 5382-16-1.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wilt, Stephanie team published research on Bioorganic Chemistry in 2020 | 84358-13-4

Name: 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Piperidine structural motif is present in numerous natural alkaloids. These include piperine, which gives black pepper its spicy taste. This gave the compound its name. 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Other examples are the fire ant toxin solenopsin, the nicotine analog anabasine of tree tobacco (Nicotiana glauca), lobeline of Indian tobacco. Name: 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid.

Wilt, Stephanie;Kodani, Sean;Le, Thanh N. H.;Nguyen, Lato;Vo, Nghi;Ly, Tanya;Rodriguez, Mark;Hudson, Paula K.;Morisseau, Christophe;Hammock, Bruce D.;Pecic, Stevan research published 《 Development of multitarget inhibitors for the treatment of pain: Design, synthesis, biological evaluation and molecular modeling studies》, the research content is summarized as follows. Multitarget-directed ligands are a promising class of drugs for discovering innovative new therapies for difficult to treat diseases. In this study, we designed dual inhibitors targeting the human fatty acid amide hydrolase (FAAH) enzyme and human soluble epoxide hydrolase (sEH) enzyme. Targeting both of these enzymes concurrently with single target inhibitors synergistically reduces inflammatory and neuropathic pain; thus, dual FAAH/sEH inhibitors are likely to be powerful analgesics. Here, we identified the piperidinyl-sulfonamide moiety as a common pharmacophore and optimized several inhibitors to have excellent inhibition profiles on both targeted enzymes simultaneously. In addition, several inhibitors show good predicted pharmacokinetic properties. These results suggest that this series of inhibitors has the potential to be further developed as new lead candidates and therapeutics in pain management.

Name: 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem

 

Wilt, Stephanie R. team published research on Chemical Biology & Drug Design in 2020 | 84358-13-4

Application of C11H19NO4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Piperidine was first reported in 1850 by the Scottish chemist Thomas Anderson and again, independently, in 1852 by the French chemist 84358-13-4, formula is C11H19NO4, Name is 1-(tert-Butoxycarbonyl)piperidine-4-carboxylic acid. Auguste Cahours, who named it. Both of them obtained piperidine by reacting piperine with nitric acid. Application of C11H19NO4.

Wilt, Stephanie R.;Rodriguez, Mark;Le, Thanh N. H.;Baltodano, Emily V.;Salas, Adrian;Pecic, Stevan research published 《 Design, microwave-assisted synthesis, biological evaluation and molecular modeling studies of 4-phenylthiazoles as potent fatty acid amide hydrolase inhibitors》, the research content is summarized as follows. Endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are endogenous lipids that activate cannabinoid receptors. Activation of these receptors produces anti-inflammatory and analgesic effects. Fatty acid amide hydrolase (FAAH) is a membrane enzyme that hydrolases endocannabinoids; thus, inhibition of FAAH represents an attractive approach to develop new therapeutics for treating inflammation and pain. Previously, potent rat FAAH inhibitors containing 2-naphthyl- and 4-phenylthiazole scaffolds were identified, but up to the present time, very little structure-activity relationship studies have been performed on these moieties. We designed and synthesized several analogs containing these structural motifs and evaluated their inhibition potencies against human FAAH enzyme. In addition, we built and validated a homol. model of human FAAH enzyme and performed docking experiments We identified several inhibitors in the low nanomolar range and calculated their ADME predicted values. These FAAH inhibitors represent promising drug candidates for future preclin. in vivo studies.

Application of C11H19NO4, N-BOC-piperidine-4-carboxylic acid, also known asN-Boc-isonipecotic acid , is a useful research compound. Its molecular formula is C11H19NO4 and its molecular weight is 229,28 g/mole. The purity is usually 95%.

N-Boc-isonipecotic acid is a potent antitumor agent that has been clinically shown to be effective against leukemia and lymphoma. It has potent antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes. N-Boc-isonipecotic acid binds to the gyrase enzyme, which is used by these bacteria to maintain the integrity of their DNA, inhibiting protein synthesis and cell division. This drug also has anti-inflammatory properties. N-Boc-isonipecotic acid inhibits prostaglandin synthesis in cells, which may be due to its ability to inhibit the production of tumor necrosis factor α (TNFα) in macrophages., 84358-13-4.

Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem