Industrially, piperidine is produced by the hydrogenation of pyridine, usually over a molybdenum disulfide catalyst: C5H5N + 3 H2 → C5H10NH. 2403-88-5, formula is C9H19NO, Name is 2,2,6,6-Tetramethyl-4-piperidinol. Pyridine can also be reduced to piperidine via a modified Birch reduction using sodium in ethanol. Quality Control of 2403-88-5.
Yin, Renli;Guo, Wanqian;Wang, Huazhe;Du, Juanshan;Wu, Qinglian;Chang, Jo-Shu;Ren, Nanqi research published 《 Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism》, the research content is summarized as follows. In this study, sludge-derived biochar (SDBC) was prepared and applied in peroxydisulfate (PDS) activation for sulfamethoxazole (SMX) degradation Compared to the slight adsorption (16.5%) by SDBC alone and low direct oxidation (10.1%) by PDS alone, the SMX degradation rate was drastically increased to 94.6% in the combined SDBC/PDS system, suggesting that SDBC can successfully and efficiently activate PDS. The observed rate constant of the combined SDBC/PDS system was 48.3 times those of both PDS alone and SDBC alone processes. Material characterization and comparative experiments showed nitrogen doping and iron loading into the carbon layer might be the important active sites of the graphene-like SDBC material in PDS activation for SMX degradation More importantly, singlet oxygen (1O2), instead of traditional sulfate radicals or hydroxyl radicals, was the predominant reactive species of the SDBC/PDS system, which involved a new nonradical oxidation method for PDS activation by SDBC. The SMX degradation pathways by the nonradical 1O2 oxidation were first studied by combining d. functional theory (DFT) calculations with exptl. results. Different from the well-known pathways of SMX through the cleavage of the sulfanilamide bond by the attack of radicals, the 1O2 was likely to attack the aniline ring of SMX to initiate and accelerate the decomposition process. Finally, the energy cost anal. of the SDBC/PDS system further demonstrated the possible and economic application of the SDBC/PDS technique for SMX degradation Thus, this study proposed a novel and economic method for PDS activation through a new nonradical oxidation pathway predominated by 1O2, which also promoted the safe and efficient transformation of antibiotics or other contaminants by PDS activation processes.
2403-88-5, 2,2,6,6-Tetramethyl-4-piperidinol(TEMPO) is a useful research compound. Its molecular formula is C9H19NO and its molecular weight is 157.25 g/mol. The purity is usually 95%.
TEMPO is an intermediate used in the preparation of Piperidinyloxy free radical derivatives.
TEMPO is an organic compound that acts as a radical scavenger. It is stable in the presence of water and air and can be used for the inhibition of bacterial growth. TEMPO reacts with reactive intermediates to form non-reactive substances and terminate chain reactions. This process is optimal at temperatures between 0°C and 40°C and pH values between 3.5 and 7.5. TEMPO has been shown to inhibit the growth of bacteria by reacting with reactive molecules such as amines, chlorides, or low energy radicals in aqueous solution. TEMPO also has genotoxic activity that inhibits DNA synthesis in bacterial cells through oxidation of guanine residues on DNA molecules., Quality Control of 2403-88-5
Referemce:
Piperidine – Wikipedia,
Piperidine | C5H11N – PubChem